1
|
Bossi E, Serrao S, Reveglia P, Ferrara A, Nobile M, Limo E, Corso G, Paglia G. Pre-analytic assessment of dried blood and dried plasma spots: integration in mass spectrometry-based metabolomics and lipidomics workflow. Anal Bioanal Chem 2025; 417:1791-1805. [PMID: 39907755 PMCID: PMC11913995 DOI: 10.1007/s00216-025-05760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Microsampling, especially dried blood spots (DBS), emerged in recent years as a viable alternative to conventional blood collection since it is rapid, simple, minimally invasive, and has user-friendly characteristics. Moreover, DBS are able to avoid analyte degradation thanks to their great stability. Due to their versatility, clinical applications with DBS have increased, including mass spectrometry-based metabolomics and lipidomics studies. In this work, we evaluated and optimized extraction protocols testing five different extraction solutions to perform metabolomics and lipidomics studies on the same spot considering three commercially available microsampling devices, Capitainer, Whatman, and Telimmune. Parallelly, we also evaluated the short-term stability of the three devices at room temperature for up to 5 days. Our results showed that pure methanol was the best compromise to simultaneously extract from the same spot both the lipidome and polar metabolome. However, we also propose a two-step protocol combining methanol and water extraction that improves polar metabolite extraction and shows improved reproducibility in Capitainer and Whatman. Short-term stability results highlighted that both polar metabolites and lipids were stable for up to 6 days using the Capitainer device, while with Whatman and Telimmune, some significant variations were observed after 3 days for some classes of metabolites/lipids, suggesting the need for cold-chain storage when working with these devices.
Collapse
Affiliation(s)
- Eleonora Bossi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy
| | - Pierluigi Reveglia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Antonietta Ferrara
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Marta Nobile
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy
| | - Elena Limo
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Giuseppe Paglia
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy.
| |
Collapse
|
2
|
Lazaros K, Adam S, Krokidis MG, Exarchos T, Vlamos P, Vrahatis AG. Non-Invasive Biomarkers in the Era of Big Data and Machine Learning. SENSORS (BASEL, SWITZERLAND) 2025; 25:1396. [PMID: 40096210 PMCID: PMC11902325 DOI: 10.3390/s25051396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Invasive diagnostic techniques, while offering critical insights into disease pathophysiology, are often limited by high costs, procedural risks, and patient discomfort. Non-invasive biomarkers represent a transformative alternative, providing diagnostic precision through accessible biological samples or physiological data, including blood, saliva, breath, and wearable health metrics. They encompass molecular and imaging approaches, revealing genetic, epigenetic, and metabolic alterations associated with disease states. Furthermore, advances in breathomics and gut microbiome profiling further expand their diagnostic scope. Even with their strengths in terms of safety, cost-effectiveness, and accessibility, non-invasive biomarkers face challenges in achieving monitoring sensitivity and specificity comparable to traditional clinical approaches. Computational advancements, particularly in artificial intelligence and machine learning, are addressing these limitations by uncovering complex patterns in multi-modal datasets, enhancing diagnostic accuracy and facilitating personalized medicine. The present review integrates recent innovations, examines their clinical applications, highlights their limitations and provides a concise overview of the evolving role of non-invasive biomarkers in precision diagnostics, positioning them as a compelling choice for large-scale healthcare applications.
Collapse
Affiliation(s)
| | | | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
| | | | | | | |
Collapse
|
3
|
Kyei-Baffour VO, Vijaya AK, Burokas A, Daliri EBM. Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 39907087 DOI: 10.1080/10408398.2025.2459341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Psychobiotics are live microorganisms that, when administered in adequate amounts, confer mental health benefits to the host. Several clinical studies have demonstrated significant mental health benefits from psychobiotic administration, making them an emerging topic in food science. Certain strains of Lactobacillus, Bifidobacterium, Streptococcus, Escherichia, and Enterococcus species are known for their ability to modulate the gut-brain axis and provide mental health benefits. Proposed action mechanisms include the production of neuroactive compounds or their precursors, which may cross the blood-brain barrier, or transported by their extracellular vesicles. However, there is a lack of in vivo evidence directly confirming these mechanisms, although indirect evidence from recent studies suggest potential pathways for further investigation. To advance our understanding, it is crucial to study these mechanisms within the host, with accurate quantification of neuroactive compounds and/or their precursors being key in such studies. Current quantification methods, however, face challenges, such as low sensitivity for detecting trace metabolites and limited specificity due to interference from other compounds, impacting the reliability of measurements. This review discusses the emerging field of psychobiotics, their potential action mechanisms, neuroactive compound estimation techniques, and perspectives for improvement in quantifying neuroactive compounds and/or precursors within the host.
Collapse
Affiliation(s)
- Vincent Owusu Kyei-Baffour
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
4
|
Thaitumu MN, De Sá e Silva DM, Louail P, Rainer J, Avgerinou G, Petridou A, Mougios V, Theodoridis G, Gika H. LC-MS-Based Global Metabolic Profiles of Alternative Blood Specimens Collected by Microsampling. Metabolites 2025; 15:62. [PMID: 39852404 PMCID: PMC11767270 DOI: 10.3390/metabo15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Blood microsampling (BμS) has recently emerged as an interesting approach in the analysis of endogenous metabolites but also in metabolomics applications. Their non-invasive way of use and the simplified logistics that they offer renders these technologies highly attractive in large-scale studies, especially the novel quantitative microsampling approaches such as VAMs or qDBS. Objectives: Herein, we investigate the potential of BµS devices compared to the conventional plasma samples used in global untargeted mass spectrometry-based metabolomics of blood. Methods: Two novel quantitative devices, namely, Mitra, Capitainer, and the widely used Whatman cards, were selected for comparison with plasma. Venous blood was collected from 10 healthy, overnight-fasted individuals and loaded on the devices; plasma was also collected from the same venous blood. An extraction solvent optimization study was first performed on the three devices before the main study, which compared the global metabolic profiles of the four extracts (three BµS devices and plasma). Analysis was conducted using reverse phase LC-TOF MS in positive mode. Results: BµS devices, especially Mitra and Capitainer, provided equal or even superior information on the metabolic profiling of human blood based on the number and intensity of features and the precision and stability of some annotated metabolites compared to plasma. Despite their rich metabolic profiles, BµS did not capture metabolites associated with biological differentiation of sexes. Conclusions: Overall, our results suggest that a more in-depth investigation of the acquired information is needed for each specific application, as a metabolite-dependent trend was obvious.
Collapse
Affiliation(s)
- Marlene N. Thaitumu
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece; (D.M.D.S.e.S.); (G.T.)
| | - Daniel Marques De Sá e Silva
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece; (D.M.D.S.e.S.); (G.T.)
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Philippine Louail
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy; (P.L.); (J.R.)
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy; (P.L.); (J.R.)
| | - Glykeria Avgerinou
- School of Physical Education & Sport Science at Thessaloniki, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (G.A.); (A.P.); (V.M.)
| | - Anatoli Petridou
- School of Physical Education & Sport Science at Thessaloniki, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (G.A.); (A.P.); (V.M.)
| | - Vassilis Mougios
- School of Physical Education & Sport Science at Thessaloniki, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (G.A.); (A.P.); (V.M.)
| | - Georgios Theodoridis
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece; (D.M.D.S.e.S.); (G.T.)
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Helen Gika
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece; (D.M.D.S.e.S.); (G.T.)
| |
Collapse
|
5
|
Yang X, Logis E, Williams K, Sheng XR, Fischer SK. Evaluation of low volume sampling devices for a pharmacodynamic biomarker analysis: Challenges and solutions. J Pharm Biomed Anal 2024; 251:116454. [PMID: 39217703 DOI: 10.1016/j.jpba.2024.116454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Low volume sampling technologies have gained popularity as they are minimally invasive, reduce patient burden, enhance population diversity, and have the potential to facilitate decentralized clinical trials. Herein, we validated a Gyrolab assay to measure soluble Mucosal Addressin Cell Adhesion Molecule 1 (sMAdCAM-1) in dried blood samples collected using two low volume sampling devices, Mitra and Tasso-M20. This validated assay was implemented in a proof-of-concept study to compare three low volume sampling devices (Mitra, Tasso-M20 and TassoOne Plus) with serum collected via venipuncture from healthy volunteers receiving etrolizumab. We observed significantly higher concentration of sMAdCAM-1 in dried blood samples collected using Mitra and Tasso-M20 compared to serum in some paired samples, which was attributed to interference from the dried blood extraction buffer. To mitigate this interference, samples required substantial dilution into the appropriate buffer, which negatively impacted the detectability of sMAdCAM-1 with the Gyrolab assay. By employing the Quanterix single molecule array (Simoa), known for its superior assay sensitivity, the interference was minimized in the diluted samples. Both liquid blood collected in TassoOne Plus and dried blood collected using Mitra and Tasso-M20 demonstrated great concordance with serum for sMAdCAM-1 measurement. However, a bias was observed in Mitra dried blood samples, presumably due to the different sample collection sites in comparison with venipuncture and Tasso devices. Our study highlights the potential of low volume sampling technologies for biomarker analysis, and underscores the importance of understanding the challenges and limitations of these technologies before integrating them into clinical studies.
Collapse
Affiliation(s)
- Xiaoyun Yang
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Evelin Logis
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kathi Williams
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - X Rebecca Sheng
- Translational Medicine, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Saloumeh K Fischer
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
6
|
Couacault P, Avella D, Londoño‐Osorio S, Lorenzo AS, Gradillas A, Kärkkäinen O, Want E, Witting M. Targeted and untargeted metabolomics and lipidomics in dried blood microsampling: Recent applications and perspectives. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400002. [PMID: 38948320 PMCID: PMC11210747 DOI: 10.1002/ansa.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
Blood microsampling (BµS) offers an alternative to conventional methods that use plasma or serum for profiling human health, being minimally invasive and cost effective, especially beneficial for vulnerable populations. We present a non-systematic review that offers a synopsis of the analytical methods, applications and perspectives related to dry blood microsampling in targeted and untargeted metabolomics and lipidomics research in the years 2022 and 2023. BµS shows potential in neonatal and paediatric studies, therapeutic drug monitoring, metabolite screening, biomarker research, sports supervision, clinical disorders studies and forensic toxicology. Notably, dried blood spots and volumetric absorptive microsampling options have been more extensively studied than other volumetric technologies. Therefore, we suggest that a further investigation and application of the volumetric technologies will contribute to the use of BµS as an alternative to conventional methods. Conversely, we support the idea that harmonisation of the analytical methods when using BµS would have a positive impact on its implementation.
Collapse
Affiliation(s)
- Pauline Couacault
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
| | - Dennisse Avella
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sara Londoño‐Osorio
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Ana S. Lorenzo
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Olli Kärkkäinen
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Elizabeth Want
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Michael Witting
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
- Chair of Analytical Food ChemistryTUM School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| |
Collapse
|
7
|
Chen Z, Goudarzi CC, Sikorski TW, Weng N. Enhancing drug development and clinical studies with patient-centric sampling using microsampling techniques: Opportunities, challenges, and insights into liquid chromatography-mass spectrometry strategies. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5023. [PMID: 38624283 DOI: 10.1002/jms.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
Microsampling has revolutionized pharmaceutical drug development and clinical research by reducing sample volume requirements, allowing sample collection at home or nontraditional sites, minimizing animal and patient burden, and enabling more flexible study designs. This perspective paper discusses the transformative impact of microsampling and patient-centric sampling (PCS) techniques, emphasizing their advantages in drug development and clinical trials. We highlight the integration of liquid chromatography-mass spectrometry (LC-MS) strategies for analyzing PCS samples, focusing on our research experience and a review of current literatures. The paper reviews commercially available PCS devices, their regulatory status, and their application in clinical trials, underscoring the benefits of PCS in expanding patient enrollment diversity and improving study designs. We also address the operational challenges of implementing PCS, including the need for bridging studies to ensure data comparability between traditional and microsampling methods, and the analytical challenges posed by PCS samples. The paper proposes future directions for PCS, including the development of global regulatory standards, technological advancements to enhance user experience, the increased concern of sustainability and patient data privacy, and the integration of PCS with other technologies for improved performance in drug development and clinical studies. By advancing microsampling and PCS techniques, we aim to foster patient-centric approaches in pharmaceutical sciences, ultimately enhancing patient care and treatment efficacy.
Collapse
Affiliation(s)
- Zhuo Chen
- Precision Medicine, GSK, Collegeville, Pennsylvania, USA
| | | | | | - Naidong Weng
- Precision Medicine, GSK, Collegeville, Pennsylvania, USA
| |
Collapse
|
8
|
Petrick L, Guan H, Page GP, Dolios G, Niedzwiecki MM, Wright RO, Wright RJ. Comparison of maternal venous blood metabolomics collected as dried blood spots, dried blood microsamplers, and plasma for integrative environmental health research. ENVIRONMENT INTERNATIONAL 2024; 187:108663. [PMID: 38657407 PMCID: PMC11555615 DOI: 10.1016/j.envint.2024.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Use of capillary blood devices for exposome research can deepen our understanding of the intricate relationship between environment and health, and open up new avenues for preventive and personalized medicine, particularly for vulnerable populations. While the potential of these whole blood devices to accurately measure chemicals and metabolites has been demonstrated, how untargeted metabolomics data from these samplers can be integrated with previous and ongoing environmental health studies that have used conventional blood collection approaches is not yet clear. Therefore, we performed a comprehensive comparison between relative-quantitative metabolite profiles measured in venous blood collected with dried whole blood microsamplers (DBM), dried whole blood spots (DBS), and plasma from 54 mothers in an ethnically diverse population. We determined that a majority of the 309 chemicals and metabolites showed similar median intensity rank, moderate correlation, and moderate agreement between participant-quantiled intraclass correlation coefficients (ICCs) for pair-wise comparisons among the three biomatrices. In particular, whole blood sample types, DBM and DBS, were in highest agreement across metabolite comparison metrics, followed by metabolites measured in DBM and plasma, and then metabolites measured in DBS and plasma. We provide descriptive characteristics and measurement summaries as a reference database. This includes unique metabolites that were particularly concordant or discordant in pairwise comparisons. Our results demonstrate that the range of metabolites from untargeted metabolomics data collected with DBM, DBS, and plasma provides biologically relevant information for use in independent exposome investigations. However, before meta-analysis with combined datasets are performed, robust statistical approaches that integrate untargeted metabolomics data collected on different blood matrices need to be developed.
Collapse
Affiliation(s)
- Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Bert Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Haibin Guan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Grier P Page
- Analytics Program, RTI International, Atlanta, GA, USA
| | - Georgia Dolios
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Ponzetto F, Parasiliti-Caprino M, Leoni L, Marinelli L, Nonnato A, Nicoli R, Kuuranne T, Ghigo E, Mengozzi G, Settanni F. LC-MS/MS measurement of endogenous steroid hormones and phase II metabolites in blood volumetric absorptive microsampling (VAMS) for doping control purposes. Clin Chim Acta 2024; 557:117890. [PMID: 38537673 DOI: 10.1016/j.cca.2024.117890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Volumetric Absorptive Microsampling (VAMS) is emerging as a valuable technique in the collection of dried biological specimens, offering a potential alternative to traditional sampling methods. The objective of this study was to assess the suitability of 30 μL VAMS for the measurement of endogenous steroid hormones. METHODS A novel LC-MS/MS method was developed for the quantification of 18 analytes in VAMS samples, including main endogenous free steroids and phase II metabolites of androgens. The method underwent validation in accordance with ISO/IEC 17025:2017 and World Anti-Doping Agency (WADA) requirements. Subsequently, it was applied to authentic VAMS samples obtained from 20 healthy volunteers to assess the stability of target analytes under varying storage conditions. RESULTS The validation protocol assessed method's selectivity, matrix effect, extraction recovery, quantitative performance, carry-over and robustness. The analysis of authentic samples demonstrated the satisfactory stability of monitored steroids in VAMS stored at room temperature, 4 °C, -20 °C and -80 °C for up to 100 days and subjected to up to 3 freezing-thawing cycles. CONCLUSIONS The validated LC-MS/MS method demonstrated its suitability for the measurement of steroids in dried blood VAMS. The observed stability of steroidal compounds suggests promising prospects for future applications of VAMS, both in anti-doping contexts and clinical research.
Collapse
Affiliation(s)
- Federico Ponzetto
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Mirko Parasiliti-Caprino
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura Leoni
- Clinical Biochemistry Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Marinelli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonello Nonnato
- Clinical Biochemistry Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine Geneva and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine Geneva and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulio Mengozzi
- Clinical Biochemistry Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy; Clinical Biochemistry Laboratory, City of Health and Science University Hospital, Turin, Italy
| | - Fabio Settanni
- Clinical Biochemistry Laboratory, City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
10
|
Nemkov T, Cendali F, Dzieciatkowska M, Stephenson D, Hansen KC, Jankowski CM, D’Alessandro A, Marker RJ. A Multiomics Assessment of Preoperative Exercise in Pancreatic Cancer Survivors Receiving Neoadjuvant Therapy: A Case Series. PATHOPHYSIOLOGY 2024; 31:166-182. [PMID: 38535623 PMCID: PMC10975467 DOI: 10.3390/pathophysiology31010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
To molecularly characterize the impact of exercise on mitigating neoadjuvant treatment (NAT)-induced physical decline in pancreatic ductal adenocarcinoma (PDAC) patients, a multi-omics approach was employed for the analysis of plasma samples before and after a personalized exercise intervention. Consisting of personalized aerobic and resistance exercises, this intervention was associated with significant molecular changes that correlated with improvements in lean mass, appendicular skeletal muscle index (ASMI), and performance in the 400-m walk test (MWT) and sit-to-stand test. These alterations indicated exercise-induced modulation of inflammation and mitochondrial function markers. This case study provides proof-of-principal application for multiomics-based assessments of supervised exercise, thereby supporting this intervention as a feasible and beneficial intervention for PDAC patients to potentially enhance treatment response and patient quality of life. The molecular changes observed here underscore the importance of physical activity in cancer treatment protocols, advocating for the development of accessible multiomics-guided exercise programs for cancer patients.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Ryan J. Marker
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Petrick LM, Niedzwiecki MM, Dolios G, Guan H, Tu P, Wright RO, Wright RJ. Effects of storage temperature and time on metabolite profiles measured in dried blood spots, dried blood microsamplers, and plasma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169383. [PMID: 38101622 PMCID: PMC10842436 DOI: 10.1016/j.scitotenv.2023.169383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
The practical advantages of capillary whole blood collection over venipuncture plasma collection for human exposome research are well known. However, before epidemiologists, clinicians, and public health researchers employ these microvolume sample collections, a rigorous evaluation of pre-analytical storage conditions is needed to develop protocols that maximize sample stability and reliability over time. Therefore, we performed a controlled experiment of dried whole blood collected on 10 μL Mitra microsamplers (DBM), 5-mm punches of whole blood from a dried blood spot (DBS), and 10 μL of plasma, and evaluated the effects of storage conditions at 4 °C, -20 °C, or -80 °C for up to 6 months on the resulting metabolite profiles measured with untargeted liquid chromatography-high resolution mass spectrometry (LC-HRMS). At -80 °C storage conditions, metabolite profiles from DBS, DBM, and plasma showed similar stability. While DBS and DBM metabolite profiles remained similarly stable at -20 °C storage, plasma profiles showed decreased stability at -20 °C compared to -80 °C storage. At refrigerated temperatures (4 °C), metabolite profiles collected on DBM were more stable than plasma or DBS, particularly for lipid classes. These results inform robust capillary blood sample storage protocols for DBM and DBS at potentially warmer temperatures than -80 °C, which may facilitate blood collections for populations outside of a clinical setting.
Collapse
Affiliation(s)
- Lauren M Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Bert Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgia Dolios
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haibin Guan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peijun Tu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Bossi E, Limo E, Pagani L, Monza N, Serrao S, Denti V, Astarita G, Paglia G. Revolutionizing Blood Collection: Innovations, Applications, and the Potential of Microsampling Technologies for Monitoring Metabolites and Lipids. Metabolites 2024; 14:46. [PMID: 38248849 PMCID: PMC10818866 DOI: 10.3390/metabo14010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Blood serves as the primary global biological matrix for health surveillance, disease diagnosis, and response to drug treatment, holding significant promise for personalized medicine. The diverse array of lipids and metabolites in the blood provides a snapshot of both physiological and pathological processes, with many routinely monitored during conventional wellness checks. The conventional method involves intravenous blood collection, extracting a few milliliters via venipuncture, a technique limited to clinical settings due to its dependence on trained personnel. Microsampling methods have evolved to be less invasive (collecting ≤150 µL of capillary blood), user-friendly (enabling self-collection), and suitable for remote collection in longitudinal studies. Dried blood spot (DBS), a pioneering microsampling technique, dominates clinical and research domains. Recent advancements in device technology address critical limitations of classical DBS, specifically variations in hematocrit and volume. This review presents a comprehensive overview of state-of-the-art microsampling devices, emphasizing their applications and potential for monitoring metabolites and lipids in blood. The scope extends to diverse areas, encompassing population studies, nutritional investigations, drug discovery, sports medicine, and multi-omics research.
Collapse
Affiliation(s)
- Eleonora Bossi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Elena Limo
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Lisa Pagani
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Nicole Monza
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Vanna Denti
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
| | - Giuseppe Paglia
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| |
Collapse
|