1
|
Gu X, Zhang Z, Zhao L, Lu L, Lu X, Li Y, Gu T, Huang X, Huang G, Liang Y, Meng H, Li B, Zhang X, Zhang J, Wang X, Du Y. Exposure to polyethylene terephthalate micro(nano)plastics exacerbates inflammation and fibrosis after myocardial infarction by reprogramming the gut and lung microbiota and metabolome. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137410. [PMID: 39919626 DOI: 10.1016/j.jhazmat.2025.137410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/06/2025] [Accepted: 01/25/2025] [Indexed: 02/09/2025]
Abstract
Micro(nano)plastics (MNPs), a ubiquitous environmental pollutant, have received increasing attention for their impacts on human health. We conducted an in-depth study on the role of polyethylene terephthalate (PET) MNPs in myocardial infarction (MI). Blood from the coronary circulation of MI patients was collected to detect microplastics (MPs). Peripheral monocytes (PBMCs) and AC16 cells were used to assess inflammation, cell proliferation and apoptosis after PET nanoplastics (NPs) stimulation. The mouse MI model was established after PET NPs respiratory or oral exposure. The results showed that various types of MPs, including high levels of PET MPs, were detected in the coronary circulation. PET NPs promoted inflammatory factors secretion by PBMCs, inhibited AC16 cell proliferation and promoted hypoxia-induced AC16 cell apoptosis. PET NPs exacerbated post-MI inflammation and fibrosis through activating the NLRP3 inflammasome pathway. Through macrogenetic sequencing and metabolomics analyses, we observed that PET NPs reprogrammed the intestinal and lung microbiota and metabolome in MI mice, leading to chronic inflammation. In conclusion, PET MPs were widely present in the coronary circulation of MI patients. PET MNPs can activate the NLRP3 inflammasome pathway to exacerbate post-MI ventricular remodelling, which may be related to the reprogramming of the gut and lung microbiota and metabolome.
Collapse
Affiliation(s)
- Xin Gu
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Zhixuan Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Lin Zhao
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Lijie Lu
- Department of Cardiology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, China; Department of Cardiology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China
| | - Xin Lu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Yafei Li
- Department of Cardiology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, China; Department of Cardiology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China
| | - Tianya Gu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Huang
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guangyi Huang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Yan Liang
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Baihong Li
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Xiaodong Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Jun Zhang
- Department of Cardiology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, China; Department of Cardiology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China.
| | - Xiaoyan Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China.
| | - Yingqiang Du
- Department of Cardiology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, China; Department of Cardiology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, China.
| |
Collapse
|
2
|
Eroli F, Johnell K, Acararicin Z, Tsagkogianni C, Zerial S, Lancia S, Latorre‐Leal M, Alanko V, Hilmer SN, Matton A, Wastesson JW, Cedazo‐Minguez A, Maioli S. Commonly prescribed multi-medication therapies exert sex-specific effects on Alzheimer's disease pathology and metabolomic profiles in App NL-G-F mice: Implications for personalized therapeutics in aging. Alzheimers Dement 2025; 21:e70081. [PMID: 40145346 PMCID: PMC11947741 DOI: 10.1002/alz.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Polypharmacy is common among older adults and people with dementia. Multi-medication therapy poses risks of harm but also targets comorbidities and risk factors associated with dementia, offering therapeutic potential. METHODS We evaluated the effects of two polypharmacy regimens and monotherapies on male and female AppNL-G-F knock-in mice. We assessed functional, emotional, and cognitive outcomes;amyloid pathology; and serum metabolomics profiles. RESULTS A combination of metoprolol, simvastatin, aspirin, paracetamol, and citalopram improved memory, reduced amyloid burden and neuroinflammation, and modulated AD-associated metabolomic signatures in male mice, with negligible effects in female mice. Substituting two cardiovascular drugs impacted emotional domains but worsened memory, predominantly in female mice. In males, monotherapies could not explain the combination effects, suggesting drug synergy, whereas in female mice, certain monotherapy effects were lost when combined. DISCUSSION This study uncovers the sex-specific effects of polypharmacy in an AD model, identifying mechanisms and biomarkers that can guide gender-specific use of medicines in dementia prevention and management. HIGHLIGHTS Two polypharmacy combinations show sex-specific effects on AD pathology and serum metabolomic profiles. Metoprolol+simvastatin+aspirin+paracetamol+citalopram improves memory and amyloid pathology in male mice. Replacing metoprolol and simvastatin with enalapril and atorvastatin eliminates benefits in male mice and impairs memory in female mice. Selected monotherapies produce sex-specific effects but only partially explain the outcomes of the combinations. Metabolomic pathways in serum indicate possible mechanisms and biomarkers for evaluating the effectiveness and safety of personalized therapies in aging and dementia.
Collapse
Affiliation(s)
- Francesca Eroli
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Kristina Johnell
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetSolnaSweden
| | - Zeynep Acararicin
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Christina Tsagkogianni
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Stefania Zerial
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Saverio Lancia
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Maria Latorre‐Leal
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Vilma Alanko
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of Clinical GeriatricsKarolinska InstitutetSolnaSweden
| | - Sarah N. Hilmer
- Kolling InstituteNorthern Sydney Local Health District and The University of SydneySt Leonards NSWAustralia
| | - Anna Matton
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of Clinical GeriatricsKarolinska InstitutetSolnaSweden
| | - Jonas W. Wastesson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetSolnaSweden
| | - Angel Cedazo‐Minguez
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Silvia Maioli
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolnaSweden
| |
Collapse
|
3
|
Wu RR, Nie DR, He FH, Li ZH, Xu F. Combined metabolomics and 16S rDNA sequence analyses of the gut microbiome reveal the action mechanism of Fructus Akebiae against hepatic fibrosis. Front Med (Lausanne) 2025; 11:1492383. [PMID: 39974825 PMCID: PMC11835924 DOI: 10.3389/fmed.2024.1492383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/17/2024] [Indexed: 02/21/2025] Open
Abstract
Objectives To explore the mechanism underlying the effect of Fructus Akebiae (FAE) against hepatic fibrosis in mice through combined network pharmacology, liver metabolomics, and 16S rDNA analyses of the gut microbiota. Methods In this study, we randomly divided mice into the control, model, FAE high-dose, FAE medium-dose, and FAE low-dose groups to analyze the pathological changes in the hepatic fibrosis and levels of the α-SMA, collagen 1, Nuclear Factor Kappa B (NF-κ B), Toll Like Receptor 4 (TLR4). The gut microbiota was analyzed through 16S rDNA sequencing analysis of liver metabolites using liquid chromatography-mass spectrometry. Furthermore, network pharmacology was used to determine the specific molecular regulation mechanism of FAE in hepatic fibrosis treatment. Results FAE treatment markedly improved the pathological changes in the hepatic fibrosis. Analysis revealed that FAE administration reversed the carbon tetrachloride (CCl4)-induced dysbiosis by increasing the abundance of Akkermansia and reducing that of Cyanobacteria. Additionally, metabolomic analysis showed that FAE treatment reversed the CCl4-induced metabolic disorders by regulating amino and nucleotide sugar metabolism. Furthermore, correlation analysis showed that Akkermansia and Verrucomicobiota were closely related to D-tolasaccharide and maltotetraose saccharide. Moreover, network pharmacology indicated that FAE might regulate the signaling pathway through the JUN/CASP3/NOS3/PTGS2/HSP90AA1 during treatment. Conclusion FAE may be a promising treatment for hepatic fibrosis, and its protective effects are associated with improvements in the microbiome and metabolic disorders.
Collapse
Affiliation(s)
- Rong-Rong Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duo-Rui Nie
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Fang-Hui He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhi-Hang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fei Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| |
Collapse
|
4
|
Lu S, Feng Q, Chen M, Zeng X, Wei H, Chen Q, Guo H, Su L, Yan B, Wu Y, Yang X, Ma P. Mechanisms underlying Th2-dominant pneumonia caused by plastic pollution derivatives (PPD): A molecular toxicology investigation that encompasses gut microbiomics and lung metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136326. [PMID: 39476687 DOI: 10.1016/j.jhazmat.2024.136326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
An investigation was conducted by researchers on how dibutyl phthalate (DBP) and polystyrene microplastics (PS-MP) influence the development of pneumonia using a mouse model. For a duration of five weeks, the mice were subjected to exposure of DBP (30 mg/kg/day) and PS-MP (0.1 mg/day). The findings indicated notable pathological alterations in airway tissues, increased oxidative stress levels, and intensified inflammation, thereby establishing a connection between plastic pollution and pneumonia. Further examination indicated the involvement of ferroptosis and oxidative stress in the progression of the disease. Administration of deferoxamine (DFO) (100 mg/kg) resulted in symptom relief and reduced pathological alterations, as validated by metabolomic investigations. Increased levels of reactive oxygen species (ROS) triggered a Th2-mediated eosinophilic inflammatory response, marked by elevated IL-4 and reduced IFN-γ via the NFκB pathway. Moreover, analyses of the gut microbiome and metabolomics demonstrated that PPD modifies microbial populations and pulmonary metabolism, linking its effects on pneumonia through the gut-lung axis. This research highlights the health hazards associated with plastic pollution and proposes a framework for tackling these issues.
Collapse
Affiliation(s)
- Surui Lu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Feng
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mingqing Chen
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xin Zeng
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Huaqin Wei
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qizi Chen
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong
| | - Liqin Su
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Biao Yan
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Yang Wu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China; Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, Yunnan, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China.
| |
Collapse
|
5
|
Bora SS, Gogoi R, Sharma MR, Anshu, Borah MP, Deka P, Bora J, Naorem RS, Das J, Teli AB. Microplastics and human health: unveiling the gut microbiome disruption and chronic disease risks. Front Cell Infect Microbiol 2024; 14:1492759. [PMID: 39669275 PMCID: PMC11635378 DOI: 10.3389/fcimb.2024.1492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Microplastics (MPs), defined as plastic particles smaller than 5 mm, are increasingly recognized as environmental contaminants with potential health risks. These emerge as breakdown products of larger plastics and are omnipresent in marine, freshwater, and terrestrial ecosystems. They are primarily composed of polymers such as polyethylene, polypropylene, polystyrene, and additives that enhance their performance. MPs also adsorb harmful environmental chemicals like persistent organic pollutants and heavy metals, posing risks to human and environmental health. Human exposure to MPs occurs mainly through ingestion and inhalation, with MPs detected in food products, water, and even the air. MPs have been shown to accumulate in the gastrointestinal tract, disrupting the gut microbiome, and causing dysbiosis-a harmful imbalance between beneficial and harmful bacteria. This disruption has been linked to various health issues, including gastrointestinal disorders, systemic inflammation, and chronic diseases. Furthermore, the gut-brain axis may be affected, with potential neuroinflammatory consequences. As research continues to unravel the health impacts of MP exposure, understanding the mechanisms of accumulation and the broader implications on human health is crucial. This review highlights the effects of MPs on human health, emphasizing their impact on the gut microbiome. We discuss the potential connections between MP exposure and cardiometabolic and inflammatory diseases, and disorders related to the Gut-Brain Axis. By synthesizing the latest research, this work sheds light on the silent yet pervasive threat posed by MPs and underscores the importance of further studies to understand their health impacts fully.
Collapse
Affiliation(s)
- Sudipta Sankar Bora
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
| | - Rahul Gogoi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhurjya Ranjan Sharma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Anshu
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhurjya Protim Borah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, India
| | - Priyadarshini Deka
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Jitul Bora
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Romen Singh Naorem
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
| | - Jugabrata Das
- College of Horticulture and Farming System Research, Assam Agricultural University, Nalbari, Assam, India
| | - Anju Barhai Teli
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
- Department of Biochemistry, Jorhat Medical College and Hospital, Jorhat, Assam, India
| |
Collapse
|
6
|
Ganie ZA, Mandal A, Arya L, T S, Talib M, Darbha GK. Assessment and accumulation of microplastics in the Indian riverine systems: Risk assessment and implications of translocation across the water-to-fish continuum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106944. [PMID: 38823071 DOI: 10.1016/j.aquatox.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Microplastic (MP) pollution has engulfed global aquatic systems, and the concerns about microplastic translocation and bioaccumulation in fish and other aquatic organisms are now an unpleasant truth. In the past few years, MP pollution in freshwater systems, particularly rivers and subsequently in freshwater organisms, especially in fish, has caught the attention of researchers. Rivers provide livelihood to approximately 40 % of the global population through food and potable water. Hence, assessment of emerging contaminants like microplastics in rivers and the associated fauna is crucial. This study assessed microplastics (MPs) in fish, sediment and freshwater samples across the third largest riverine system of peninsular India, the Mahanadi River. The number concentrations of MPs measured in water, sediment and fish ranged from 337.5 ± 54.4-1333.3 ± 557.2 MPs/m3, 14.7 ± 3.7-69.3 ± 10.1 MPs/kg. Dry weight and 0.4-3.2 MPs/Fish, respectively. Surprisingly, MPs were found in every second fish sample, with a higher MP number in the gut than in the gills. Black and blue coloured filaments with <0.5 mm size were the dominant MPs with polypropylene and polyethylene polymers in abundance. The Polymer Hazard Index (PHI) and the Potential Ecological Risk Index (PERI) studies revealed that the majority of the sampling sites fell in Risk category V (dangerous category). An irregular trend in the MP concentration was observed downstream of the river, though relatively elevated MP concentrations in water and fish samples were observed downstream of the river. t-Distributed Stochastic Neighbour Embedding (t-SNE) unveiled distinct patterns in MP distribution with a higher similarity exhibited in the MPs found in fish gill and gut samples, unlike water and sediment, which shared certain characteristics. The findings in the current study contribute to filling the knowledge gap of MP assessment and accumulation in global freshwater systems and highlight the microplastic contamination and accumulation in fish with its potential implications on human health.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Abhishek Mandal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Lavish Arya
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sangeetha T
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Mohmmed Talib
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
7
|
Su QL, Wu J, Tan SW, Guo XY, Zou DZ, Kang K. The impact of microplastics polystyrene on the microscopic structure of mouse intestine, tight junction genes and gut microbiota. PLoS One 2024; 19:e0304686. [PMID: 38837998 DOI: 10.1371/journal.pone.0304686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Microplastics, which are tiny plastic particles less than 5 mm in diameter, are widely present in the environment, have become a serious threat to aquatic life and human health, potentially causing ecosystem disorders and health problems. The present study aimed to investigate the effects of microplastics, specifically microplastics-polystyrene (MPs-PS), on the structural integrity, gene expression related to tight junctions, and gut microbiota in mice. A total of 24 Kunming mice aged 30 days were randomly assigned into four groups: control male (CM), control female (CF), PS-exposed male (PSM), and PS-exposed female (PSF)(n = 6). There were significant differences in villus height, width, intestinal surface area, and villus height to crypt depth ratio (V/C) between the PS group and the control group(C) (p <0.05). Gene expression analysis demonstrated the downregulation of Claudin-1, Claudin-2, Claudin-15, and Occludin, in both duodenum and jejunum of the PS group (p < 0.05). Analysis of microbial species using 16S rRNA sequencing indicated decreased diversity in the PSF group, as well as reduced diversity in the PSM group at various taxonomic levels. Beta diversity analysis showed a significant difference in gut microbiota distribution between the PS-exposed and C groups (R2 = 0.113, p<0.01), with this difference being more pronounced among females exposed to MPs-PS. KEGG analysis revealed enrichment of differential microbiota mainly involved in seven signaling pathways, such as nucleotide metabolism(p<0.05). The relative abundance ratio of transcriptional pathways was significantly increased for the PSF group (p<0.01), while excretory system pathways were for PSM group(p<0.05). Overall findings suggest that MPs-PS exhibit a notable sex-dependent impact on mouse gut microbiota, with a stronger effect observed among females; reduced expression of tight junction genes may be associated with dysbiosis, particularly elevated levels of Prevotellaceae.
Collapse
Affiliation(s)
- Qi-Ling Su
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jiang Wu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shao-Wen Tan
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xiao-Yun Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Ding-Zhe Zou
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Kai Kang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
8
|
Tilves C, Zhao HJ, Differding MK, Zhang M, Liu T, Hoyo C, Østbye T, Benjamin-Neelon SE, Mueller NT. Associations of Plastic Bottle Exposure with Infant Growth, Fecal Microbiota, and Short-Chain Fatty Acids. Microorganisms 2023; 11:2924. [PMID: 38138068 PMCID: PMC10745781 DOI: 10.3390/microorganisms11122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND/OBJECTIVES Murine models show that plastics, via their chemical constituents (e.g., phthalates), influence microbiota, metabolism, and growth. However, research on plastics in humans is lacking. Here, we examine how the frequency of plastic bottle exposure is associated with fecal microbiota, short-chain fatty acids (SCFAs), and anthropometry in the first year of life. SUBJECTS/METHODS In 442 infants from the prospective Nurture birth cohort, we examined the association of frequency of plastic bottle feeding at 3 months with anthropometric outcomes (skinfolds, length-for-age, and weight-for-length) at 12 months of age and growth trajectories between 3 and 12 months. Furthermore, in a subset of infants (n = 70) that contributed fecal samples at 3 months and 12 months of age, we examined plastic bottle frequency in relation to fecal microbiota composition and diversity (measured by 16S rRNA gene sequencing of V4 region), and fecal SCFA concentrations (quantified using gas chromatography mass spectrometry). RESULTS At 3 months, 67.6% of infants were plastic bottle fed at every feeding, 15.4% were exclusively breast milk fed, and 48.9% were exclusively formula fed. After adjustment for potential confounders, infants who were plastic bottle fed less than every feeding compared to those who were plastic bottle fed at every feeding at 3 months did not show differences in anthropometry over the first 12 months of life, save for lower length-for-age z-score at 12 months (adjusted β = -0.45, 95% CI: -0.76, -0.13). Infants who were plastic bottle fed less than every feeding versus every feeding had lower fecal microbiota alpha diversity at 3 months (mean difference for Shannon index: -0.59, 95% CI: -0.99, -0.20) and lower isovaleric acid concentration at 3 months (mean difference: -2.12 μmol/g, 95% CI: -3.64, -0.60), but these results were attenuated following adjustment for infant diet. Plastic bottle frequency was not strongly associated with microbiota diversity or SCFAs at 12 months after multivariable adjustment. Frequency of plastic bottle use was associated with differential abundance of some bacterial taxa, however, significance was not consistent between statistical approaches. CONCLUSIONS Plastic bottle frequency at 3 months was not strongly associated with measures of adiposity or growth (save for length-for-age) over the first year of life, and while plastic bottle use was associated with some features of fecal microbiota and SCFAs in the first year, these findings were attenuated in multivariable models with infant diet. Future research is needed to assess health effects of exposure to other plastic-based products and objective measures of microplastics and plastic constituents like phthalates.
Collapse
Affiliation(s)
- Curtis Tilves
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Heather Jianbo Zhao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Moira K. Differding
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
| | - Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Tiange Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Truls Østbye
- Department of Family Medicine and Community Health, Duke University, Durham, NC 27708, USA;
| | - Sara E. Benjamin-Neelon
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Noel T. Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.T.); (H.J.Z.); (M.K.D.); (M.Z.); (T.L.)
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli R, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542598. [PMID: 37398080 PMCID: PMC10312509 DOI: 10.1101/2023.06.02.542598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Rama Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|