1
|
Perez-Campos E, Pérez-Campos Mayoral L, Hernández-Huerta MT, Cabrera-Fuentes HA. Comment on: "Impaired Ischemia-Reperfusion Responses in the Hearts of Aged Male and Female Offspring of Obese Rats". Arch Med Res 2025; 56:103110. [PMID: 39442226 DOI: 10.1016/j.arcmed.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Eduardo Perez-Campos
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT Oaxaca, Oaxaca, Mexico.
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación UNAM-UABJO, Facultad de Medicina Universidad, Autónoma Benito Juárez de Oaxaca. Ex-Hacienda, de Aguilera S/N San Felipe del Agua, Oaxaca de Juárez, Mexico.
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Facultad de Medicina Universidad Autónoma Benito, Juárez de Oaxaca, Oaxaca de Juárez, Mexico.
| | - Hector A Cabrera-Fuentes
- Centro de Investigación UNAM-UABJO, Facultad de Medicina Universidad, Autónoma Benito Juárez de Oaxaca. Ex-Hacienda, de Aguilera S/N San Felipe del Agua, Oaxaca de Juárez, Mexico; División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT Oaxaca, Oaxaca, Mexico; R&D Group, Vice presidency for Scientific Research and Innovation Imam Abdulrahman Bin Faisal University Dammam, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
2
|
Meulders B, Marei WFA, Loier L, Leroy JLMR. Lipotoxicity and Oocyte Quality in Mammals: Pathogenesis, Consequences, and Reversibility. Annu Rev Anim Biosci 2025; 13:233-254. [PMID: 39565833 DOI: 10.1146/annurev-animal-111523-102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Metabolic stress conditions are often characterized by upregulated lipolysis and subsequently increased serum free fatty acid (FFA) concentrations, leading to the uptake of FFAs by non-adipose tissues and impairment of their function. This phenomenon is known as lipotoxicity. The increased serum FFA concentrations are reflected in the ovarian follicular fluid, which can have harmful effects on oocyte development. Several studies using in vitro and in vivo mammalian models showed that altered oocyte metabolism, increased oxidative stress, and mitochondrial dysfunction are crucial mechanisms underlying this detrimental impact. Ultimately, this can impair offspring health through the persistence of defective mitochondria in the embryo, hampering epigenetic reprogramming and early development. In vitro and in vivo treatments to enhance oocyte mitochondrial function are increasingly being developed. This can help to improve pregnancy rates and safeguard offspring health in metabolically compromised individuals.
Collapse
Affiliation(s)
- Ben Meulders
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| | - Waleed F A Marei
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| | - Lien Loier
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| |
Collapse
|
3
|
Cochrane ALK, Murphy MP, Ozanne SE, Giussani DA. Pregnancy in obese women and mechanisms of increased cardiovascular risk in offspring. Eur Heart J 2024; 45:5127-5145. [PMID: 39508438 DOI: 10.1093/eurheartj/ehae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Pregnancy complicated by maternal obesity contributes to an increased cardiovascular risk in offspring, which is increasingly concerning as the rates of obesity and cardiovascular disease are higher than ever before and still growing. There has been much research in humans and preclinical animal models to understand the impact of maternal obesity on offspring health. This review summarizes what is known about the offspring cardiovascular phenotype, describing a mechanistic role for oxidative stress, metabolic inflexibility, and mitochondrial dysfunction in mediating these impairments. It also discusses the impact of secondary postnatal insults, which may reveal latent cardiovascular deficits that originated in utero. Finally, current interventional efforts and gaps of knowledge to limit the developmental origins of cardiovascular dysfunction in offspring of obese pregnancy are highlighted.
Collapse
Affiliation(s)
- Anna L K Cochrane
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Liu C, Lu Y, Huang C, Zeng Y, Zheng Y, Wang C, Huang H. A combination analysis based on bioinformatics tools reveals new signature genes related to maternal obesity and fetal programming. Front Med (Lausanne) 2024; 11:1434105. [PMID: 39296904 PMCID: PMC11408335 DOI: 10.3389/fmed.2024.1434105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/21/2024] Open
Abstract
Background Maternal obesity significantly influences fetal development and health later in life; however, the molecular mechanisms behind it remain unclear. This study aims to investigate signature genes related to maternal obesity and fetal programming based on a genomic-wide transcriptional placental study using a combination of different bioinformatics tools. Methods The dataset (GSE128381) was obtained from Gene Expression Omnibus (GEO). The data of 100 normal body mass index (BMI) and 27 obese mothers were included in the analysis. Differentially expressed genes (DEGs) were evaluated by limma package. Thereafter, functional enrichment analysis was implemented. Then, weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) analysis were used to further screening of signature genes. Simple linear regression analysis was used to assess the correlation between signature genes and newborn birth weight. Gene set enrichment analysis (GSEA) was implemented to study signaling pathways related to signature genes. The expression of the signature genes was also explored in 48 overweight mothers in the same dataset. Results A total of 167 DEGs were obtained, of which 122 were up-regulated while 45 were down-regulated. The dataset was then clustered into 11 modules by WGCNA, and the MEbrown was found as the most significant module related to maternal obesity and fetal programming (cor = 0.2, p = 0.03). The LASSO analysis showed that PTX3, NCF2, HOXB5, ABCA6, and C1orf162 are signature genes related to maternal obesity and fetal programming, which were increased in the placenta of obese mothers compared to those with normal BMI. The area under the curve (AUC) of the signature genes in the receiver operating characteristic curve (ROC) was 0.709, 0.660, 0.674, 0.667, and 0.717, respectively. Simple linear regression analysis showed that HOXB5 was associated with newborn birth weight. GSEA analysis revealed that these signature genes positively participate in various signaling pathways/functions in the placenta. Conclusion PTX3, NCF2, HOXB5, ABCA6, and C1orf162 are novel signature genes related to maternal obesity and fetal programming, of which HOXB5 is implicated in newborn birth weight.
Collapse
Affiliation(s)
- Chunhong Liu
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| | - Yulan Lu
- Department of Medical Reproduction Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chunchuan Huang
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| | - Yonglong Zeng
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| | - Yuye Zheng
- Department of Rehabilitation Medicine, The Traditional Chinese Medicine Hospital of Baise City, Basie, China
| | - Chunfang Wang
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| | - Huatuo Huang
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Baise, China
| |
Collapse
|
5
|
Burden SJ, Alshehri R, Lamata P, Poston L, Taylor PD. Maternal obesity and offspring cardiovascular remodelling - the effect of preconception and antenatal lifestyle interventions: a systematic review. Int J Obes (Lond) 2024; 48:1045-1064. [PMID: 38898228 PMCID: PMC11281905 DOI: 10.1038/s41366-024-01536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Preconception or antenatal lifestyle interventions in women with obesity may prevent adverse cardiovascular outcomes in the child, including cardiac remodelling. We undertook a systematic review of the existing data to examine the impact of randomised controlled trials of lifestyle interventions in pregnant women with obesity on offspring cardiac remodelling and related parameters of cardiovascular health. METHODS This review was registered with PROSPERO (CRD42023454762) and aligns with PRISMA guidelines. PubMed, Embase, and previous reviews were systematically searched. Follow-up studies from randomised trials of lifestyle interventions in pregnant women with obesity, which included offspring cardiac remodelling or related cardiovascular parameters as outcome measures, were included based on pre-defined inclusion criteria. RESULTS Eight studies from five randomised controlled trials were included after screening 3252 articles. Interventions included antenatal exercise (n = 2), diet and physical activity (n = 2), and preconception diet and physical activity (n = 1). Children were <2-months to 3-7-years-old, with sample sizes ranging between n = 18-404. Reduced cardiac remodelling, with reduced interventricular septal wall thickness, was consistently reported. Some studies identified improved systolic and diastolic function and a reduced resting heart rate. Risk of bias analyses rated all studies as 'fair' (some risk of bias). A high loss-to-follow-up was a common limitation. CONCLUSION Although there is some evidence to suggest that lifestyle interventions in women with obesity may limit offspring cardiac remodelling, further high-quality longitudinal studies with larger sample sizes are required to confirm these observations and to determine whether these changes persist to adulthood. Child offspring cardiovascular health benefits of preconception and antenatal lifestyle interventions in women with obesity.
Collapse
Affiliation(s)
- Samuel J Burden
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK.
| | - Rahaf Alshehri
- Cardiovascular Medicine and Science Research, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Pablo Lamata
- Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lucilla Poston
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Paul D Taylor
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Xhonneux I, Marei WFA, Meulders B, Andries S, Leroy JLMR. The interplay of maternal and offspring obesogenic diets: the impact on offspring metabolism and muscle mitochondria in an outbred mouse model. Front Physiol 2024; 15:1354327. [PMID: 38585221 PMCID: PMC10995298 DOI: 10.3389/fphys.2024.1354327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Consumption of obesogenic (OB) diets increases the prevalence of maternal obesity worldwide, causing major psychological and social burdens in women. Obesity not only impacts the mother's health and fertility but also elevates the risk of obesity and metabolic disorders in the offspring. Family lifestyle is mostly persistent through generations, possibly contributing to the growing prevalence of obesity. We hypothesized that offspring metabolic health is dependent on both maternal and offspring diet and their interaction. We also hypothesized that the sensitivity of the offspring to the diet may be influenced by the match or mismatch between offspring and maternal diets. To test these hypotheses, outbred Swiss mice were fed a control (C, 10% fat, 7% sugar, and n = 14) or OB diet (60% fat, 20% sugar, and n = 15) for 7 weeks and then mated with the same control males. Mice were maintained on the same corresponding diet during pregnancy and lactation, and the offspring were kept with their mothers until weaning. The study focused only on female offspring, which were equally distributed at weaning and fed C or OB diets for 7 weeks, resulting in four treatment groups: C-born offspring fed C or OB diets (C » C and C » OB) and OB-born offspring fed C or OB diets (OB » C and OB » OB). Adult offspring's systemic blood profile (lipid and glucose metabolism) and muscle mitochondrial features were assessed. We confirmed that the offspring's OB diet majorly impacted the offspring's health by impairing the offspring's serum glucose and lipid profiles, which are associated with abnormal muscle mitochondrial ultrastructure. Contrarily, maternal OB diet was associated with increased expression of mitochondrial complex markers and mitochondrial morphology in offspring muscle, but no additive effects of (increased sensitivity to) an offspring OB diet were observed in pups born to obese mothers. In contrast, their metabolic profile appeared to be healthier compared to those born to lean mothers and fed an OB diet. These results are in line with the thrifty phenotype hypothesis, suggesting that OB-born offspring are better adapted to an environment with high energy availability later in life. Thus, using a murine outbred model, we could not confirm that maternal obesogenic diets contribute to female familial obesity in the following generations.
Collapse
Affiliation(s)
- Inne Xhonneux
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Waleed F. A. Marei
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ben Meulders
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Silke Andries
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Jo L. M. R. Leroy
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Diniz MS, Magalhães CC, Tocantins C, Grilo LF, Teixeira J, Pereira SP. Nurturing through Nutrition: Exploring the Role of Antioxidants in Maternal Diet during Pregnancy to Mitigate Developmental Programming of Chronic Diseases. Nutrients 2023; 15:4623. [PMID: 37960276 PMCID: PMC10649237 DOI: 10.3390/nu15214623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring's predisposition to chronic diseases later in life. Research has suggested that mitochondrial function and oxidative stress may play a role in the developmental programming of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the offspring to chronic diseases. In this specific context, we explore the promising advantages of maternal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine (NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a probable intervention for disease prevention.
Collapse
Affiliation(s)
- Mariana S. Diniz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carina C. Magalhães
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís F. Grilo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Susana P. Pereira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
8
|
Pereira SP, Diniz MS, Tavares LC, Cunha-Oliveira T, Li C, Cox LA, Nijland MJ, Nathanielsz PW, Oliveira PJ. Characterizing Early Cardiac Metabolic Programming via 30% Maternal Nutrient Reduction during Fetal Development in a Non-Human Primate Model. Int J Mol Sci 2023; 24:15192. [PMID: 37894873 PMCID: PMC10607248 DOI: 10.3390/ijms242015192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy. Using a well-established nonhuman IUGR primate model, we induced IUGR by reducing by 30% the maternal diet (MNR), both in males (MNR-M) and in female (MNR-F) fetuses. Fetal cardiac left ventricle (LV) tissue and blood were collected at 90 days of gestation (0.5 gestation, 0.5 G). Blood biochemical parameters were determined and heart LV mitochondrial biology assessed. MNR fetus biochemical blood parameters confirm an early fetal response to MNR. In addition, we show that in utero cardiac mitochondrial MNR adaptations are already detectable at this early stage, in a sex-divergent way. MNR induced alterations in the cardiac gene expression of oxidative phosphorylation (OXPHOS) subunits (mostly for complex-I, III, and ATP synthase), along with increased protein content for complex-I, -III, and -IV subunits only for MNR-M in comparison with male controls, highlight the fetal cardiac sex-divergent response to MNR. At this fetal stage, no major alterations were detected in mitochondrial DNA copy number nor markers for oxidative stress. This study shows that in 90-day nonhuman primate fetuses, a 30% decrease in maternal nutrition generated early in utero adaptations in fetal blood biochemical parameters and sex-specific alterations in cardiac left ventricle gene and protein expression profiles, affecting predominantly OXPHOS subunits. Since the OXPHOS system is determinant for energy production in mitochondria, our findings suggest that these early IUGR-induced mitochondrial adaptations play a role in offspring's mitochondrial dysfunction and can increase predisposition to CVD in a sex-specific way.
Collapse
Affiliation(s)
- Susana P. Pereira
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Mariana S. Diniz
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- PDBEB—Ph.D. Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ludgero C. Tavares
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama—EUVG, 3020-210 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark J. Nijland
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Peter W. Nathanielsz
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (L.A.C.); (P.W.N.)
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (T.C.-O.); (P.J.O.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|