1
|
Salbitani G, Maresca V, Cianciullo P, Bossa R, Carfagna S, Basile A. Non-Protein Thiol Compounds and Antioxidant Responses Involved in Bryophyte Heavy-Metal Tolerance. Int J Mol Sci 2023; 24:5302. [PMID: 36982378 PMCID: PMC10049163 DOI: 10.3390/ijms24065302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Heavy-metal pollution represents a problem which has been widely discussed in recent years. The biological effects of heavy metals have been studied in both animals and plants, ranging from oxidative stress to genotoxicity. Plants, above all metal-tolerant species, have evolved a wide spectrum of strategies to counteract exposure to toxic metal concentrations. Among these strategies, the chelation and vacuolar sequestration of heavy metals are, after cell-wall immobilization, the first line of defence that prevent heavy metals from interacting with cell components. Furthermore, bryophytes activate a series of antioxidant non-enzymatic and enzymatic responses to counteract the effects of heavy metal in the cellular compartments. In this review, the role of non-protein thiol compounds and antioxidant molecules in bryophytes will be discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
2
|
Salbitani G, Perrone A, Rosati L, Laezza C, Carfagna S. Sulfur Starvation in Extremophilic Microalga Galdieria sulphuraria: Can Glutathione Contribute to Stress Tolerance? PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040481. [PMID: 35214814 PMCID: PMC8877276 DOI: 10.3390/plants11040481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 05/02/2023]
Abstract
This study reports the effects of sulfur (S) deprivation in cultures of Galdieria sulphuraria (Cyanidiophyceae). Galdieria is a unicellular red alga that usually grows, forming biomats on rocks, in S-rich environments. These are volcanic areas, where S is widespread since H2S is the prevalent form of gas. The glutathione content in Galdieria sulphuraria is much higher than that found in the green algae and even under conditions of S deprivation for 7 days, it remains high. On the other hand, the S deprivation causes a decrease in the total protein content and a significant increase in soluble protein fraction. This suggests that in the conditions of S starvation, the synthesis of enzymatic proteins, that metabolically support the cell in the condition of nutritional stress, could be up regulated. Among these enzymatic proteins, those involved in cell detoxification, due to the accumulation of ROS species, have been counted.
Collapse
Affiliation(s)
- Giovanna Salbitani
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 21, 80126 Naples, Italy; (G.S.); (A.P.); (L.R.)
| | - Angela Perrone
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 21, 80126 Naples, Italy; (G.S.); (A.P.); (L.R.)
| | - Luigi Rosati
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 21, 80126 Naples, Italy; (G.S.); (A.P.); (L.R.)
| | - Carmen Laezza
- Dipartimento di Agraria, Università di Napoli Federico II, Portici, 80055 Naples, Italy;
| | - Simona Carfagna
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia 21, 80126 Naples, Italy; (G.S.); (A.P.); (L.R.)
- Correspondence: ; Tel.: +39-081-2538559
| |
Collapse
|
3
|
Carfagna S, Salbitani G, Innangi M, Menale B, De Castro O, Di Martino C, Crawford TW. Simultaneous Biochemical and Physiological Responses of the Roots and Leaves of Pancratium maritimum (Amaryllidaceae) to Mild Salt Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:345. [PMID: 33670404 PMCID: PMC7918514 DOI: 10.3390/plants10020345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022]
Abstract
Pancratium maritimum (Amaryllidaceae) is a bulbous geophyte growing on coastal sands. In this study, we investigated changes in concentrations of metabolites in the root and leaf tissue of P. maritimum in response to mild salt stress. Changes in concentrations of osmolytes, glutathione, sodium, mineral nutrients, enzymes, and other compounds in the leaves and roots were measured at 0, 3, and 10 days during a 10-day exposure to two levels of mild salt stress, 50 mM NaCl or 100 mM NaCl in sandy soil from where the plants were collected in dunes near Cuma, Italy. Sodium accumulated in the roots, and relatively little was translocated to the leaves. At both concentrations of NaCl, higher values of the concentrations of oxidized glutathione disulfide (GSSG), compared to reduced glutathione (GSH), in roots and leaves were associated with salt tolerance. The concentration of proline increased more in the leaves than in the roots, and glycine betaine increased in both roots and leaves. Differences in the accumulation of organic osmolytes and electron donors synthesized in both leaves and roots demonstrate that osmoregulatory and electrical responses occur in these organs of P. maritimum under mild salt stress.
Collapse
Affiliation(s)
- Simona Carfagna
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (S.C.); (G.S.); (B.M.); (O.D.C.)
| | - Giovanna Salbitani
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (S.C.); (G.S.); (B.M.); (O.D.C.)
| | - Michele Innangi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Bruno Menale
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (S.C.); (G.S.); (B.M.); (O.D.C.)
| | - Olga De Castro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (S.C.); (G.S.); (B.M.); (O.D.C.)
| | - Catello Di Martino
- Dipartimento di Agricoltura, Ambiente ed Alimenti, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Thomas W. Crawford
- Dipartimento di Agricoltura, Ambiente ed Alimenti, Università degli Studi del Molise, 86100 Campobasso, Italy
| |
Collapse
|
4
|
Salbitani G, Del Prete S, Bolinesi F, Mangoni O, De Luca V, Carginale V, Donald WA, Supuran CT, Carfagna S, Capasso C. Use of an immobilised thermostable α-CA (SspCA) for enhancing the metabolic efficiency of the freshwater green microalga Chlorella sorokiniana. J Enzyme Inhib Med Chem 2020; 35:913-920. [PMID: 32223467 PMCID: PMC7170359 DOI: 10.1080/14756366.2020.1746785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is significant interest in increasing the microalgal efficiency for producing high-quality products that are commonly used as food additives in nutraceuticals. Some natural substances that can be extracted from algae include lipids, carbohydrates, proteins, carotenoids, long-chain polyunsaturated fatty acids, and vitamins. Generally, microalgal photoautotrophic growth can be maximised by optimising CO2 biofixation, and by adding sodium bicarbonate and specific bacteria to the microalgal culture. Recently, to enhance CO2 biofixation, a thermostable carbonic anhydrase (SspCA) encoded by the genome of the bacterium Sulfurihydrogenibium yellowstonense has been heterologously expressed and immobilised on the surfaces of bacteria. Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, which catalyse the physiologically reversible reaction of carbon dioxide hydration to bicarbonate and protons: CO2 + H2O ⇄ HCO3− + H+. Herein, we demonstrate for the first time that the fragments of bacterial membranes containing immobilised SspCA (M-SspCA) on their surfaces can be doped into the microalgal culture of the green unicellular alga, Chlorella sorokiniana, to significantly enhance the biomass, photosynthetic activity, carotenoids production, and CA activity by this alga. These results are of biotechnological interest because C. sorokiniana is widely used in many different areas, including photosynthesis research, human pharmaceutical production, aquaculture-based food production, and wastewater treatment.
Collapse
Affiliation(s)
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | | | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Vincenzo Carginale
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- School of Chemistry, University of New South Wales, Sydney, Australia.,Department of NEUROFARB, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Simona Carfagna
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| |
Collapse
|
5
|
Chlorella sorokiniana Dietary Supplementation Increases Antioxidant Capacities and Reduces Ros Release in Mitochondria of Hyperthyroid Rat Liver. Antioxidants (Basel) 2020; 9:antiox9090883. [PMID: 32957734 PMCID: PMC7555375 DOI: 10.3390/antiox9090883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 01/06/2023] Open
Abstract
The ability of aerobic organisms to cope with the attack of radicals and other reactive oxygen species improves by feeding on foods containing antioxidants. Microalgae contain many molecules showing in vitro antioxidant capacity, and their food consumption can protect cells from oxidative insults. We evaluated the capacity of dietary supplementation with 1% dried Chlorella sorokiniana strain 211/8k, an alga rich in glutathione, α-tocopherol, and carotenoids, to counteract an oxidative attack in vivo. We used the hyperthyroid rat as a model of oxidative stress, in which the increase in metabolic capacities is associated with an increase in the release of mitochondrial reactive oxygen species (ROS) and the susceptibility to oxidative insult. Chlorella sorokiniana supplementation prevents the increases in oxidative stress markers and basal oxygen consumption in hyperthyroid rat livers. It also mitigates the thyroid hormone-induced increase in maximal aerobic capacities, the mitochondrial ROS release, and the susceptibility to oxidative stress. Finally, alga influences the thyroid hormone-induced changes in the factors involved in mitochondrial biogenesis peroxisomal proliferator-activated receptor-γ coactivator (PGC1-1) and nuclear respiratory factor 2 (NRF-2). Our results suggest that Chlorella sorokiniana dietary supplementation has beneficial effects in counteracting oxidative stress and that it works primarily by preserving mitochondrial function. Thus, it can be useful in preventing dysfunctions in which mitochondrial oxidative damage and ROS production play a putative role.
Collapse
|
6
|
Rapid and Positive Effect of Bicarbonate Addition on Growth and Photosynthetic Efficiency of the Green Microalgae Chlorella Sorokiniana (Chlorophyta, Trebouxiophyceae). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bicarbonate ions are the primary source of inorganic carbon for autotrophic organisms living in aquatic environments. In the present study, we evaluated the short-term (hours) effects of sodium bicarbonate (NaHCO3) addition on the growth and photosynthetic efficiency of the green algae Chlorella sorokiniana (211/8k). Bicarbonate was added to nonaxenic cultures at concentrations of 1, 2, and 3 g L−1 leading to a significant increase in biomass especially at the highest salt concentration (3 g L−1) and also showing a bactericidal and bacteriostatic effect that helped to keep a reduced microbial load in the algal culture. Furthermore, bicarbonate stimulated the increase in cellular content of chlorophyll a, improving the photosynthetic performance of cells. Since microalgae of genus Chlorella spp. show great industrial potential for the production of biofuels, nutraceuticals, cosmetics, health, and dietary supplements and the use of bicarbonate as a source of inorganic carbon led to short-term responses in Chlorella sorokiniana, this method represents a valid alternative not only to the insufflation of carbon dioxide for the intensive cultures but also for the production of potentially bioactive compounds in a short period.
Collapse
|
7
|
Wei L, Wang H, Xu N, Zhou W, Ju J, Liu J, Ma Y. Metabolic engineering of Corynebacterium glutamicum for l-cysteine production. Appl Microbiol Biotechnol 2018; 103:1325-1338. [DOI: 10.1007/s00253-018-9547-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
8
|
Salbitani G, Carfagna S. Extraction and Activity of O-acetylserine(thiol)lyase (OASTL) from Microalga Chlorella sorokiniana. Bio Protoc 2017; 7:e2342. [DOI: 10.21769/bioprotoc.2342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/20/2017] [Accepted: 05/12/2017] [Indexed: 11/02/2022] Open
|
9
|
Carfagna S, Bottone C, Cataletto PR, Petriccione M, Pinto G, Salbitani G, Vona V, Pollio A, Ciniglia C. Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga Galdieria phlegrea (Cyanidiophyceae). PLANT & CELL PHYSIOLOGY 2016; 57:1890-8. [PMID: 27388343 DOI: 10.1093/pcp/pcw112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/03/2016] [Indexed: 05/18/2023]
Abstract
In plants and algae, sulfate assimilation and cysteine synthesis are regulated by sulfur (S) accessibility from the environment. This study reports the effects of S deprivation in autotrophic and heterotrophic cultures of Galdieria phlegrea (Cyanidiophyceae), a unicellular red alga isolated in the Solfatara crater located in Campi Flegrei (Naples, Italy), where H2S is the prevalent form of gaseous S in the fumarolic fluids and S is widespread in the soils near the fumaroles. This is the first report on the effects of S deprivation on a sulfurous microalga that is also able to grow heterotrophically in the dark. The removal of S from the culture medium of illuminated cells caused a decrease in the soluble protein content and a significant decrease in the intracellular levels of glutathione. Cells from heterotrophic cultures of G. phlegrea exhibited high levels of internal proteins and high glutathione content, which did not diminish during S starvation, but rather glutathione significantly increased. The activity of O-acetylserine(thiol)lyase (OASTL), the enzyme synthesizing cysteine, was enhanced under S deprivation in a time-dependent manner in autotrophic but not in heterotrophic cells. Analysis of the transcript abundance of the OASTL gene supports the OASTL activity increase in autotrophic cultures under S deprivation.
Collapse
Affiliation(s)
- Simona Carfagna
- Department of Biology, University of Naples Federico II, Via Foria 223, I-80139 Naples, Italy
| | - Claudia Bottone
- Department of Biology, University of Naples Federico II, Via Foria 223, I-80139 Naples, Italy
| | - Pia Rosa Cataletto
- Department of Biology, University of Naples Federico II, Via Foria 223, I-80139 Naples, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di ricerca per la Frutticoltura, Via Torrino 2, I-81100 Caserta, Italy
| | - Gabriele Pinto
- Department of Biology, University of Naples Federico II, Via Foria 223, I-80139 Naples, Italy
| | - Giovanna Salbitani
- Department of Biology, University of Naples Federico II, Via Foria 223, I-80139 Naples, Italy
| | - Vincenza Vona
- Department of Biology, University of Naples Federico II, Via Foria 223, I-80139 Naples, Italy
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Via Foria 223, I-80139 Naples, Italy
| | - Claudia Ciniglia
- Department of Biological and Pharmaceutical Science and Technology, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy
| |
Collapse
|
10
|
Salbitani G, Vona V, Bottone C, Petriccione M, Carfagna S. Sulfur Deprivation Results in Oxidative Perturbation in Chlorella sorokiniana (211/8k). PLANT & CELL PHYSIOLOGY 2015; 56:897-905. [PMID: 25647328 DOI: 10.1093/pcp/pcv015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Indexed: 05/08/2023]
Abstract
Sulfur deficiency in plant cells has not been considered as a potential abiotic factor that can induce oxidative stress. We studied the antioxidant defense system of Chlorella sorokiniana cultured under sulfur (S) deficiency, imposed for a maximum period of 24 h, to evaluate the effect of an S shortage on oxidative stress. S deprivation induced an immediate (30 min) but transient increase in the intracellular H2O2 content, which suggests that S limitation can lead to a temporary redox disturbance. After 24 h, S deficiency in Chlorella cells decreased the glutathione content to <10% of the value measured in cells that were not subjected to S deprivation. Consequently, we assumed that the cellular antioxidative mechanisms could be altered by a decrease in the total glutathione content. The total ascorbate pool increased within 2 h after the initiation of S depletion, and remained high until 6 h; however, ascorbate regeneration was inhibited under limited S conditions, indicated by a significant decrease in the ascorbate/dehydroascorbate (AsA/DHA) ratios. Furthermore, ascorbate peroxidase (APX) and superoxide dismutase (SOD) were activated under S deficiency, but we assumed that these enzymes were involved in maintaining the cellular H2O2 balance for at least 4 h after the initiation of S starvation. We concluded that S deprivation triggers redox changes and induces antioxidant enzyme activities in Chlorella cells. The accumulation of total ascorbate, changes in the reduced glutathione/oxidized glutathione (GSH/GSSG) ratios and an increase in the activity of SOD and APX enzymes indicate that oxidative perturbation occurs during S deprivation.
Collapse
Affiliation(s)
- Giovanna Salbitani
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| | - Vincenza Vona
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| | - Claudia Bottone
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di ricerca per la Frutticoltura, Via Torrino 2, 81100 Caserta, Italy
| | - Simona Carfagna
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| |
Collapse
|
11
|
Abstract
In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.
Collapse
Affiliation(s)
- Hannah Birke
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | | | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|