1
|
Kundacina I, Kundacina O, Miskovic D, Radonic V. Advancing microfluidic design with machine learning: a Bayesian optimization approach. LAB ON A CHIP 2025; 25:657-672. [PMID: 39887214 DOI: 10.1039/d4lc00872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Microfluidic technology, which involves the manipulation of fluids in microchannels, faces challenges in channel design and performance optimization due to its complex, multi-parameter nature. Traditional design and optimization approaches usually rely on time-consuming numerical simulations, or on trial-and-error methods, which entail high costs associated with experimental evaluations. Additionally, commonly used optimization methods require many numerical simulations, and to avoid excessive computation time, they approximate simulation results with faster surrogate models. Alternatively, machine learning (ML) is becoming increasingly significant in microfluidics and technology in general, enabling advancements in data analysis, automation, and system optimization. Among ML methods, Bayesian optimization (BO) stands out by systematically exploring the design space, usually using Gaussian processes (GP) to model the objective function and guide the search for optimal designs. In this paper, we demonstrate the application of BO in the design optimization of the microfluidic systems, by enhancing the mixing performance of a micromixer with parallelogram barriers and a Tesla micromixer modified with parallelogram barriers. Micromixer models were made using Comsol Multiphysics software® and their geometric parameters were optimized using BO. The presented approach minimizes the number of required simulations to reach the optimal design, thus eliminating the need for developing a separate surrogate model for approximation of the simulation results. The results showed the effectiveness of using BO for design optimization, both in terms of the execution speed and reaching the optimum of the objective function. The optimal geometries for efficient mixing were achieved at least an order of magnitude faster compared to state-of-the-art optimization methods for microfluidic design. In addition, the presented approach can be widely applied to other microfluidic devices, such as droplet generators, particle separators, etc.
Collapse
Affiliation(s)
- Ivana Kundacina
- University of Novi Sad, BioSense Institute, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia.
| | - Ognjen Kundacina
- The Institute for Artificial Intelligence Research and Development of Serbia, Fruskogorska 1, 21000 Novi Sad, Serbia
| | - Dragisa Miskovic
- The Institute for Artificial Intelligence Research and Development of Serbia, Fruskogorska 1, 21000 Novi Sad, Serbia
| | - Vasa Radonic
- University of Novi Sad, BioSense Institute, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
2
|
Kuo CH, Su CK. Fully 4D-Printed Near-Infrared-Actuated Lab-on-Valve Solid-Phase Extraction Devices. Anal Chem 2025; 97:1281-1290. [PMID: 39722172 PMCID: PMC11755401 DOI: 10.1021/acs.analchem.4c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Four-dimensional printing (4DP) technologies can expand the functionality of stimuli-responsive devices to enable the integration of multiple stimuli-responsive parts into a compact device. Herein, we used digital light processing three-dimensional printing technique, flexible photocurable resins, and photocurable resins of the temperature-responsive hydrogels comprising N-isopropylacrylamide (NIPAM), N,N'-methylenebis(acrylamide) (MBA), and graphene for 4DP of a lab-on-valve (LOV) solid-phase extraction (SPE) device. This device featured flow manifolds and a monolithic packing connected by four near-infrared (NIR)-actuated temperature-responsive switching valves composed of a poly(NIPAM/MBA) (PNM) ball pushing a flexible membrane. NIR irradiation caused the deswelling of the PNM ball [temperature > volume phase transition temperature (VPTT) of the hydrogel], and the valve was opened to switch the flow direction. The termination of this irradiation caused the swelling of the PNM ball (temperature < VPTT of the hydrogel) to close the valve and thus recover the original flow direction to achieve the automatic NIR-actuated fluid control. The optimized 4D-printed NIR-actuated LOV-SPE device enabled a fully automatic SPE scheme coupled with inductively coupled plasma mass spectrometry for the determination of Mn, Co, Ni, Cu, Zn, Cd, and Pb ions (detection limits = 0.1,6.8 ng L-1). The reliability of this analytical method was validated by determining the metal ions in the four reference materials (CASS-6, SLRS-5, 1643f, and Trace Elements Urine L-2) and environmental water and human urine samples. Our results demonstrated the capability and applicability of 4DP technologies for advancing the automation of LOV-SPE schemes and related analytical methods.
Collapse
Affiliation(s)
- Chia-Hsun Kuo
- Department of Chemistry, National Chung Hsing University, Taichung City 402202, Taiwan, ROC
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung City 402202, Taiwan, ROC
| |
Collapse
|
3
|
Song J, Meng S, Liu J, Chen N. Processing and inspection of high-pressure microfluidics systems: A review. BIOMICROFLUIDICS 2025; 19:011501. [PMID: 39781103 PMCID: PMC11706627 DOI: 10.1063/5.0235201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications. Then, it summarizes several materials used in the microfabrication of high-pressure microfluidics chips, reviewing their properties, processing methods, and bonding methods. In addition, advanced laser processing techniques for the microfabrication of high-pressure microfluidics chips are described. Last, the paper examines the analytical detection methods employed in high-pressure microfluidics systems, encompassing optical and electrochemical detection methods. The review of analytical detection methods shows the different functions and application scenarios of high-pressure microfluidics systems. In summary, this study provides an efficient and advanced microfluidics system, which can be widely used in chemical engineering, food industry, and environmental engineering under high pressure conditions.
Collapse
Affiliation(s)
- Jiangyi Song
- School Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shaoxin Meng
- State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China
| | - Jianben Liu
- State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China
| | - Naichao Chen
- Author to whom correspondence should be addressed:. Tel.: +6-21-61655270. Fax: +86-21-61655270
| |
Collapse
|
4
|
Sagot M, Derkenne T, Giunchi P, Davit Y, Nougayrède JP, Tregouet C, Raimbault V, Malaquin L, Venzac B. Functionality integration in stereolithography 3D printed microfluidics using a "print-pause-print" strategy. LAB ON A CHIP 2024; 24:3508-3520. [PMID: 38934387 PMCID: PMC11235415 DOI: 10.1039/d4lc00147h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Stereolithography 3D printing, although an increasingly used fabrication method for microfluidic chips, has the main disadvantage of producing monolithic chips in a single material. We propose to incorporate during printing various objects using a "print-pause-print" strategy. Here, we demonstrate that this novel approach can be used to incorporate glass slides, hydrosoluble films, paper pads, steel balls, elastic or nanoporous membranes and silicon-based microdevices, in order to add microfluidic functionalities as diverse as valves, fluidic diodes, shallow chambers, imaging windows for bacteria tracking, storage of reagents, blue energy harvesting or filters for cell capture and culture.
Collapse
Affiliation(s)
- Matthieu Sagot
- LAAS-CNRS, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France.
- Smartcatch, 1 Place Pierre Potier, 31100, Toulouse, France
| | - Timothée Derkenne
- MIE, CBI, ESPCI Paris, Université PSL, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | - Perrine Giunchi
- Institut de Mécanique des Fluides de Toulouse (IMFT, UMR 5502), Université de Toulouse, CNRS, INPT, UPS, 2 Allée du Professeur Camille Soula, 31400 Toulouse, France
- Institut de Recherche en Santé Digestive (IRSD, U1220), Université de Toulouse, INRAE, ENVT, UPS, 105 Avenue de Casselardit, 31300 Toulouse, France
| | - Yohan Davit
- Institut de Mécanique des Fluides de Toulouse (IMFT, UMR 5502), Université de Toulouse, CNRS, INPT, UPS, 2 Allée du Professeur Camille Soula, 31400 Toulouse, France
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD, U1220), Université de Toulouse, INRAE, ENVT, UPS, 105 Avenue de Casselardit, 31300 Toulouse, France
| | - Corentin Tregouet
- MIE, CBI, ESPCI Paris, Université PSL, CNRS, 10 Rue Vauquelin, 75005 Paris, France
| | | | - Laurent Malaquin
- LAAS-CNRS, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France.
| | - Bastien Venzac
- LAAS-CNRS, CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France.
| |
Collapse
|
5
|
Musharaf HM, Roshan U, Mudugamuwa A, Trinh QT, Zhang J, Nguyen NT. Computational Fluid-Structure Interaction in Microfluidics. MICROMACHINES 2024; 15:897. [PMID: 39064408 PMCID: PMC11278627 DOI: 10.3390/mi15070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid-structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.
Collapse
Affiliation(s)
- Hafiz Muhammad Musharaf
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| |
Collapse
|
6
|
Li B, Zhang L, Bai S, Jin J, Chen H. A brief overview of passive microvalves in microfluidics: Mechanism, manufacturing, and applications. BIOMICROFLUIDICS 2024; 18:021506. [PMID: 38659429 PMCID: PMC11037934 DOI: 10.1063/5.0188807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Microvalves play a crucial role in manipulating fluid states within a microfluidic system and are finding widespread applications in fields such as biology, medicine, and environmental preservation. Leveraging the characteristics and features of microvalves enables the realization of various complicated microfluidic functions. Continuous advancement in the manufacturing process contributes to more flexible control modes for passive microvalves. As a consequence, these valves are progressively shrinking in size while simultaneously improving in precision and stability. Although active microvalves have the benefits of low leakage, rapid response time, and wide adaptability range, the energy supply system limits the size and even their applicability in integration and miniaturization. In comparison, passive microvalves have the advantage of relying solely on the fluid flow or fluid driving pressure to control the open/close of fluid flow over active microvalves, in spite of having slightly reduced control accuracy. Their self-sustaining feature is highly consistent with the need for assembly and miniaturization in the point-of-care testing technology. Hence, these valves have attracted significant interest for research and application purposes. This review focuses on the recent literature on passive microvalves and details existing passive microvalves from three different aspects: operating principle, processing method, and applications. This work aims to increase the visibility of passive microvalves among researchers and enhance their comprehension by classifying them according to the aforementioned three aspects, facilitating the practical applications and further developments of passive microvalves. Additionally, this paper is expected to serve as a comprehensive and systematic reference for interdisciplinary researchers that intend to design related microfluidic systems.
Collapse
Affiliation(s)
- Bin Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Ludan Zhang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Siwei Bai
- Authors to whom correspondence should be addressed:; ; and . Tel.: +86 755 8615 3249
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
7
|
Chappel E. Design and Characterization of an Adjustable Passive Flow Regulator and Application to External CSF Drainage. MICROMACHINES 2023; 14:675. [PMID: 36985082 PMCID: PMC10059702 DOI: 10.3390/mi14030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Passive valves that deliver a constant flow rate regardless of inlet pressure changes have numerous applications in research, industry, and medical fields. The present article describes a passive spring valve that can be adjusted manually to deliver the required flow rate. The valve consists of a movable rod with an engraved microchannel. The fluidic resistance of the device varies together with the inlet pressure to regulate the flow rate. A prototype was made and characterized. Flow-rate adjustment up to +/-30% of the nominal flow rate was shown. A simple numerical model of the fluid flow through the device was made to adapt the design to external ventricular drainage of cerebrospinal fluid (CSF). Some insights about the implementation of this solution are also discussed.
Collapse
Affiliation(s)
- Eric Chappel
- Microsystems Department, Debiotech SA, 1004 Lausanne, Switzerland
| |
Collapse
|
8
|
Iakovlev AP, Erofeev AS, Gorelkin PV. Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review. BIOSENSORS 2022; 12:956. [PMID: 36354465 PMCID: PMC9688261 DOI: 10.3390/bios12110956] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/02/2023]
Abstract
This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
Collapse
Affiliation(s)
| | | | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia
| |
Collapse
|
9
|
Park J, Park JK. Pushbutton-activated microfluidic cartridge as a user-friendly sample preparation tool for diagnostics. BIOMICROFLUIDICS 2021; 15:041302. [PMID: 34257794 PMCID: PMC8270647 DOI: 10.1063/5.0056580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic technologies have several advantages in sample preparation for diagnostics but suffer from the need for an external operation system that hampers user-friendliness. To overcome this limitation in microfluidic technologies, a number of user-friendly methods utilizing capillary force, degassed poly(dimethylsiloxane), pushbutton-driven pressure, a syringe, or a pipette have been reported. Among these methods, the pushbutton-driven, pressure-based method has a great potential to be widely used as a user-friendly sample preparation tool for point-of-care testing or portable diagnostics. In this Perspective, we focus on the pushbutton-activated microfluidic technologies toward a user-friendly sample preparation tool. The working principle and recent advances in pushbutton-activated microfluidic technologies are briefly reviewed, and future perspectives for wide application are discussed in terms of integration with the signal analysis system, user-dependent variation, and universal and facile use.
Collapse
Affiliation(s)
| | - Je-Kyun Park
- Author to whom correspondence should be addressed:
| |
Collapse
|
10
|
A passive Stokes flow rectifier for Newtonian fluids. Sci Rep 2021; 11:10182. [PMID: 33986400 PMCID: PMC8119468 DOI: 10.1038/s41598-021-89699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Non-linear effects of the Navier–Stokes equations disappear under the Stokes regime of Newtonian fluid flows disallowing a flow rectification behavior. Here we show that passive flow rectification of Newtonian fluids is obtainable under the Stokes regime of both compressible and incompressible flows by introducing nonlinearity into the otherwise linear Stokes equations. Asymmetric flow resistances arise in shallow nozzle/diffuser microchannels with deformable ceiling, in which the fluid flow is governed by a non-linear coupled fluid–solid mechanics equation. The proposed model captures the unequal deflection profile of the deformable ceiling depending on the flow direction under the identical applied pressure, permitting a larger flow rate in the nozzle configuration. Ultra-low aspect ratio microchannels sealed by a flexible membrane have been fabricated to demonstrate passive flow rectification for low-Reynolds-number flows (0.001 < Re < 10) of common Newtonian fluids such as water, methanol, and isopropyl alcohol. The proposed rectification mechanism is also extended to compressible flows, leading to the first demonstration of rectifying equilibrium gas flows under the Stokes flow regime. While the maximum rectification ratio experimentally obtained in this work is limited to 1.41, a higher value up to 1.76 can be achieved by optimizing the width profile of the asymmetric microchannels.
Collapse
|
11
|
Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing. MICROMACHINES 2021; 12:mi12020139. [PMID: 33525451 PMCID: PMC7911320 DOI: 10.3390/mi12020139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Tissue chips (TCs) and microphysiological systems (MPSs) that incorporate human cells are novel platforms to model disease and screen drugs and provide an alternative to traditional animal studies. This review highlights the basic definitions of TCs and MPSs, examines four major organs/tissues, identifies critical parameters for organization and function (tissue organization, blood flow, and physical stresses), reviews current microfluidic approaches to recreate tissues, and discusses current shortcomings and future directions for the development and application of these technologies. The organs emphasized are those involved in the metabolism or excretion of drugs (hepatic and renal systems) and organs sensitive to drug toxicity (cardiovascular system). This article examines the microfluidic/microfabrication approaches for each organ individually and identifies specific examples of TCs. This review will provide an excellent starting point for understanding, designing, and constructing novel TCs for possible integration within MPS.
Collapse
|
12
|
A Review of Passive Constant Flow Regulators for Microfluidic Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review gives an overview of passive constant flow regulators dedicated to microfluidic applications. Without external control and energy consumption, these devices deliver a constant flow rate regardless of pressure variations, making them very attractive for various microfluidic applications, including drug delivery, flow chemistry, point-of-care tests, or microdialysis. This technical review examines progress over the last three decades in the development of these flow regulators and focuses on the working principle, fabrication methods, performance, and potential applications.
Collapse
|
13
|
Woo J, Sohn DK, Ko HS. Analysis of Stiffness Effect on Valve Behavior of a Reciprocating Pump Operated by Piezoelectric Elements. MICROMACHINES 2020; 11:mi11100894. [PMID: 32993189 PMCID: PMC7599901 DOI: 10.3390/mi11100894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
This study analyzed the characteristics of a small reciprocating pump with a cantilever valve driven by a piezo actuator. Three types of valves were fabricated to investigate the effect of the valve stiffness on the pump performance and to measure the variation in the flow rate according to the frequency. The flow rate increased with the driving frequency until a certain frequency was reached, and then it started to decrease. The rise in the pressure of the pump was found to increase as the stiffness decreased. The pump performance could be clearly distinguished according to the stiffness of the valve. The observation of the valve movements revealed that the valve opening time did not change regardless of the operating frequency, but it changed with the valve stiffness. The delay in time for the outlet valve increased significantly with an increase in the frequency. It seems that the overlap of the opening time of the inlet valve and the outlet valve plays an important role in pump performance. Therefore, it is advisable to use different designs for the inlet and outlet valves, where the shape and stiffness of the valve are adjusted.
Collapse
|
14
|
Gao ZX, Liu P, Yue Y, Li JY, Wu H. Comparison of Swing and Tilting Check Valves Flowing Compressible Fluids. MICROMACHINES 2020; 11:mi11080758. [PMID: 32781638 PMCID: PMC7464032 DOI: 10.3390/mi11080758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Although check valves have attracted a lot of attention, work has rarely been completed done when there is a compressible working fluid. In this paper, the swing check valve and the tilting check valve flowing high-temperature compressible water vapor are compared. The maximum Mach number under small valve openings, the dynamic opening time, and the hydrodynamic moment acting on the valve disc are chosen to evaluate the difference between the two types of check valves. Results show that the maximum Mach number increases with the decrease in the valve opening and the increase in the mass flow rate, and the Mach number and the pressure difference in the tilting check valve are higher. In the swing check valve, the hydrodynamic moment is higher and the valve opening time is shorter. Furthermore, the valve disc is more stable for the swing check valve, and there is a periodical oscillation of the valve disc in the tilting check valve under a small mass flow rate.
Collapse
Affiliation(s)
- Zhi-xin Gao
- SUFA Technology Industry Co., Ltd., CNNC, Suzhou 215129, China; (Z.-x.G.); (Y.Y.); (J.-y.L.); (H.W.)
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ping Liu
- SUFA Technology Industry Co., Ltd., CNNC, Suzhou 215129, China; (Z.-x.G.); (Y.Y.); (J.-y.L.); (H.W.)
| | - Yang Yue
- SUFA Technology Industry Co., Ltd., CNNC, Suzhou 215129, China; (Z.-x.G.); (Y.Y.); (J.-y.L.); (H.W.)
| | - Jun-ye Li
- SUFA Technology Industry Co., Ltd., CNNC, Suzhou 215129, China; (Z.-x.G.); (Y.Y.); (J.-y.L.); (H.W.)
| | - Hui Wu
- SUFA Technology Industry Co., Ltd., CNNC, Suzhou 215129, China; (Z.-x.G.); (Y.Y.); (J.-y.L.); (H.W.)
| |
Collapse
|
15
|
A New Non-Invasive Air-Based Actuator for Characterizing and Testing MEMS Devices. ACTUATORS 2020. [DOI: 10.3390/act9020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This research explores a new ATE (Automatic Testing Equipment) method for Micro Electro Mechanical Systems (MEMS) devices. In this method, microscale aerodynamic drag force is generated on a movable part of a MEMS sensor from a micronozzle hole located a specific distance above the chip that will result in a measurable change in output. This approach has the potential to be generalized for the characterization of every MEMS device in mass production lines to test the functionality of devices rapidly and characterize important mechanical properties. The most important testing properties include the simultaneous application of controllable and non-invasive manipulative force, a single handler for multi-sensor, and non-contact characterization, which are relatively difficult to find with other contemporary approaches. Here we propose a custom-made sensing platform consisting of a microcantilever array interconnected to a data acquisition device to read the capacitive effects of each cantilever’s deflection caused by air drag force. This platform allows us to empirically prove the functionality and applicability of the proposed characterization method using airflow force stimuli. The results, stimulatingly, exhibited that air force from a hole of 5 µm radii located 25 µm above a 200 × 200 µm2 surface could be focused on a circular spot with radii of approximately 5 µm with surface sweep accuracy of <8 µm. This micro-size airflow jet can be specifically designed to apply airflow force on the MEMS movable component surface. Furthermore, it was shown that the generated air force range could be controlled from 20 nN to 60 nN, approximately, with a linear dependency on airflow ranging from 5 m/s to 20 m/s, which is from a 5 µm radius microhole air jet placed 400 µm above the chip. In this case-study chip, for a microcantilever with a length of 400 µm, the capacitance curve increased linearly from 28.2 pF to 30.5 pF with airflow variation from 5 m/s to 21 m/s from a hole. The resultant curve is representative of a standard curve for testing of the further similar die. Based on these results, this paper paves the way towards the development of a new non-contact, non-invasive, easy-to-operate, reliable, and relatively cheap air-based method for characterizing and testing MEMS sensors.
Collapse
|
16
|
Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery. MICROMACHINES 2019; 10:mi10120798. [PMID: 31766417 PMCID: PMC6952951 DOI: 10.3390/mi10120798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
The microvalve for accurate flow control under low fluidic pressure is vital in cost-effective and miniaturized microfluidic devices. This paper proposes a novel microfluidic passive valve comprising of a liquid chamber, an elastic membrane, and an ellipsoidal control chamber, which actualizes a high flow rate control under an ultra-low threshold pressure. A prototype of the microvalve was fabricated by 3D printing and UV laser-cutting technologies and was tested under static and time-dependent pressure conditions. The prototype microvalve showed a nearly constant flow rate of 4.03 mL/min, with a variation of ~4.22% under the inlet liquid pressures varied from 6 kPa to 12 kPa. In addition, the microvalve could stabilize the flow rate of liquid under the time-varying sinusoidal pressures or the square wave pressures. To validate the functionality of the microvalve, the prototype microvalve was applied in a gas-driven flow system which employed an air blower or human mouth blowing as the low-cost gas source. The microvalve was demonstrated to successfully regulate the steady flow delivery in the system under the low driving pressures produced by the above gas sources. We believe that this new microfluidic passive valve will be suitable for controlling fluid flow in portable microfluidic devices or systems of wider applications.
Collapse
|