1
|
Feng X, Wu Z, Cheng LKW, Xiang Y, Sugimura R, Lin X, Wu AR. Reversibly-bonded microfluidic devices for stable cell culture and rapid, gentle cell extraction. LAB ON A CHIP 2024; 24:3546-3555. [PMID: 38949063 DOI: 10.1039/d3lc01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Microfluidic chips have emerged as significant tools in cell culture due to their capacity for supporting cells to adopt more physiologically relevant morphologies in 3D compared with traditional cell culture in 2D. Currently, irreversible bonding methods, where chips cannot be detached from their substrates without destroying the structure, are commonly used in fabrication, making it challenging to conduct further analysis on cells that have been cultured on-chip. Although some reversible bonding techniques have been developed, they are either restricted to certain materials such as glass, or require complex processing procedures. Here, we demonstrate a simple and reversible polydimethylsiloxane (PDMS)-polystyrene (PS) bonding technique that allows devices to withstand extended operations while pressurized, and supports long-term stable cell cultures. More importantly, it allows rapid and gentle live cell extraction for downstream manipulation and characterization after long-term on-chip culturing, and even further subculturing. Our new approach could greatly facilitate microfluidic chip-based cell and tissue cultures, overcoming current analytical limitations and opening up new avenues for downstream uses of on-chip cultures, including 3D-engineered tissue structures for biomedical applications.
Collapse
Affiliation(s)
- Xiaohan Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Zehaoyu Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Lily Kwan Wai Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Yang Xiang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Ryohichi Sugimura
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Xuyan Lin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
- Center for Engineering Material and Reliability, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR
| |
Collapse
|
2
|
Zhang Y, Sun K, Xie Y, Liang K, Zhang J, Fan Y. Reversible bonding of microfluidics: Review and applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:061501. [PMID: 37862510 DOI: 10.1063/5.0142551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/24/2023] [Indexed: 10/22/2023]
Abstract
With the development of microfluidic technology, new materials and fabrication methods have been constantly invented in the field of microfluidics. Bonding is one of the key steps for the fabrication of enclosed-channel microfluidic chips, which have been extensively explored by researchers globally. The main purpose of bonding is to seal/enclose fabricated microchannels for subsequent fluid manipulations. Conventional bonding methods are usually irreversible, and the forced detachment of the substrate and cover plate may lead to structural damage to the chip. Some of the current microfluidic applications require reversible bonding to reuse the chip or retrieve the contents inside the chip. Therefore, it is essential to develop reversible bonding methods to meet the requirements of various applications. This review introduces the most recent developments in reversible bonding methods in microfluidics and their corresponding applications. Finally, the perspective and outlook of reversible bonding technology were discussed in this review.
Collapse
Affiliation(s)
- Y Zhang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - K Sun
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Y Xie
- LK Injection Molding Machine Co., Ltd., Zhongshan, Guangdong, People's Republic of China
| | - K Liang
- LK Injection Molding Machine Co., Ltd., Zhongshan, Guangdong, People's Republic of China
| | - J Zhang
- College of Electronic Science and Control Engineering, Institute of Disaster Prevention, Sanhe, People's Republic of China
| | - Y Fan
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
3
|
Gimenez R, Pérez-Sosa C, Bourguignon N, Miriuka S, Bhansali S, Arroyo CR, Debut A, Lerner B, Pérez MS. Simple Microcontact Printing Technique to Obtain Cell Patterns by Lithography Using Grayscale, Photopolymer Flexographic Mold, and PDMS. Biomimetics (Basel) 2022; 7:155. [PMID: 36278712 PMCID: PMC9624307 DOI: 10.3390/biomimetics7040155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2023] Open
Abstract
Microcontact printing using PDMS embossing tools and its variations have aroused the interest of a wide spectrum of research fields, hence the feasibility of defining micro and nanoscale patterns. In this work, we have proposed and demonstrated a novel lithography method based on grayscale patterns printed in a flexographic photopolymer mold and transferred to epoxy resin and a single PDMS stamp to obtain different microprint pattern structures. The geometry of the patterns can be modified by adjusting the layout and grayscale of the stamp patterns. The functionality of this contact printing methodology was validated by generating human induced pluripotent stem cells (hiPSC) patterns. These specific micropatterns can be very useful for achieving complex differentiation in cell lines such as hiPSC. Microfabrication through the new technique provides a promising alternative to conventional lithography for constructing complex aligned surfaces; these structures could be used as components of biological patterns or microfluidic devices.
Collapse
Affiliation(s)
- Rocio Gimenez
- IREN Center, National Technological University, Buenos Aires 1706, Argentina
| | - Camilo Pérez-Sosa
- IREN Center, National Technological University, Buenos Aires 1706, Argentina
| | - Natalia Bourguignon
- IREN Center, National Technological University, Buenos Aires 1706, Argentina
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Santiago Miriuka
- LIAN-CONICET-FLENI, Ruta 9 Km 52, 5, Belén de Escobar 1625, Argentina
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Carlos R. Arroyo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui P.O. Box 171-5-231B, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui P.O. Box 171-5-231B, Ecuador
| | - Betiana Lerner
- IREN Center, National Technological University, Buenos Aires 1706, Argentina
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
- Collaborative Research Institute Intelligent Oncology (CRIION), Hermann-Herder-Straße 4, 79104 Freiburg im Breisgau, Germany
| | - Maximiliano S. Pérez
- IREN Center, National Technological University, Buenos Aires 1706, Argentina
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
- Collaborative Research Institute Intelligent Oncology (CRIION), Hermann-Herder-Straße 4, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Bourguignon N, Karp P, Attallah C, Chamorro DA, Oggero M, Booth R, Ferrero S, Bhansali S, Pérez MS, Lerner B, Helguera G. Large Area Microfluidic Bioreactor for Production of Recombinant Protein. BIOSENSORS 2022; 12:bios12070526. [PMID: 35884329 PMCID: PMC9313365 DOI: 10.3390/bios12070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
To produce innovative biopharmaceuticals, highly flexible, adaptable, robust, and affordable bioprocess platforms for bioreactors are essential. In this article, we describe the development of a large-area microfluidic bioreactor (LM bioreactor) for mammalian cell culture that works at laminar flow and perfusion conditions. The 184 cm2 32 cisterns LM bioreactor is the largest polydimethylsiloxane (PDMS) microfluidic device fabricated by photopolymer flexographic master mold methodology, reaching a final volume of 2.8 mL. The LM bioreactor was connected to a syringe pump system for culture media perfusion, and the cells’ culture was monitored by photomicrograph imaging. CHO-ahIFN-α2b adherent cell line expressing the anti-hIFN-a2b recombinant scFv-Fc monoclonal antibody (mAb) for the treatment of systemic lupus erythematosus were cultured on the LM bioreactor. Cell culture and mAb production in the LM bioreactor could be sustained for 18 days. Moreover, the anti-hIFN-a2b produced in the LM bioreactor showed higher affinity and neutralizing antiproliferative activity compared to those mAbs produced in the control condition. We demonstrate for the first-time, a large area microfluidic bioreactor for mammalian cell culture that enables a controlled microenvironment suitable for the development of high-quality biologics with potential for therapeutic use.
Collapse
Affiliation(s)
- Natalia Bourguignon
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Paola Karp
- Laboratorio de Biotecnología Farmacéutica, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad de Buenos Aires C1428ADN, Argentina; (P.K.); (S.F.)
| | - Carolina Attallah
- Centro Biotecnológico del Litoral, Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Santa Fe S3000ZAA, Provincia de Santa Fe, Argentina; (C.A.); (M.O.)
| | - Daniel A. Chamorro
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
| | - Marcos Oggero
- Centro Biotecnológico del Litoral, Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Santa Fe S3000ZAA, Provincia de Santa Fe, Argentina; (C.A.); (M.O.)
| | - Ross Booth
- Roche Sequencing Solutions, Inc., Pleasanton, CA 94588, USA;
| | - Sol Ferrero
- Laboratorio de Biotecnología Farmacéutica, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad de Buenos Aires C1428ADN, Argentina; (P.K.); (S.F.)
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Maximiliano S. Pérez
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| | - Betiana Lerner
- Centro IREN, Universidad Tecnológica Nacional, Haedo B1706EAH, Provincia de Buenos Aires, Argentina; (N.B.); (D.A.C.); (M.S.P.)
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
- Correspondence: (B.L.); (G.H.); Tel.:+5411-4343-1177 (ext. 1209) (B.L.); +54-11-4783-2869 (G.H.)
| | - Gustavo Helguera
- Laboratorio de Biotecnología Farmacéutica, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad de Buenos Aires C1428ADN, Argentina; (P.K.); (S.F.)
- Correspondence: (B.L.); (G.H.); Tel.:+5411-4343-1177 (ext. 1209) (B.L.); +54-11-4783-2869 (G.H.)
| |
Collapse
|