1
|
Voloshchuk O, Rolon ML, Bartlett KV, Mendez Acevedo M, LaBorde LF, Kovac J. Pseudomonadaceae increased the tolerance of Listeria monocytogenes to sanitizers in multi-species biofilms. Food Microbiol 2025; 128:104687. [PMID: 39952739 DOI: 10.1016/j.fm.2024.104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 02/17/2025]
Abstract
The persistence of the foodborne pathogen Listeria monocytogenes in food processing facilities may be facilitated by the formation of multi-species biofilms by environmental microbiota. This study aimed to determine whether multi-species biofilm formation results in an increased tolerance of L. monocytogenes in biofilms to the sanitizers benzalkonium chloride (BAC) and peroxyacetic acid (PAA) at concentrations commonly used in food processing facilities. Biofilms composed of microbiota previously shown to co-occur with L. monocytogenes in tree fruit packing facilities (i.e., Pseudomonadaceae, Xanthomonadaceae, Flavobacteriaceae, and Microbacteriaceae) were formed with L. monocytogenes in single- and multi-family assemblages. Multi-family biofilms were exposed to 250 or 500 ppm of PAA, or 200 ppm of BAC to determine the die-off kinetics of L. monocytogenes. Furthermore, the ability of a commercial biofilm remover to disrupt biofilms and inhibit bacteria in the formed single- and multi-family assemblage biofilms was assessed. The die-off kinetics of total bacteria and L. monocytogenes in biofilm assemblages throughout the exposure to a sanitizer was determined using the aerobic plate count and the most probable number methods, respectively. Biofilm assemblages that included Pseudomonadaceae resulted in an increased tolerance of L. monocytogenes to BAC and PAA compared to biofilm assemblages without Pseudomonadaceae. Further, the use of the biofilm remover significantly disrupted biofilms and reduced the concentration of L. monocytogenes in single- and multi-family biofilms by 5 or more logarithmic units. These findings highlight the need to improve the control of biofilm-forming microbiota in food processing facilities to mitigate the persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - M Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Katelyn V Bartlett
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| | | | - Luke F LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Dong Y, Jiang Y, Sui M, Yu J, Wu J, Gu Z, Zhou X. Linking proteomic function and structure to electroactive biofilms development across electrode orientations. BIORESOURCE TECHNOLOGY 2024; 412:131375. [PMID: 39214174 DOI: 10.1016/j.biortech.2024.131375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The functionality of electroactive biofilms (EABs) is profoundly influenced by the proteomic dynamics within microbial communities, particularly through the participation of proteins in electron transfer. This study explored the impact of electrode surface orientation, measured by varying oblique angles, on the performance of EABs in bioelectrochemical systems (BES). Utilizing quantitative proteomics, results indicated that a slightly oblique angle (45°) optimized the spatial arrangement of microbial cells, enhancing electron transport efficiency compared to other angles tested. Specifically, the 45° orientation resulted in a 2.36-fold increase in the abundance of c-type cytochromes compared to the 90°. Additionally, Geobacter, showed a relative abundance of 83.25 % at 45°, correlating with a peak current density of 1.87 ± 0.04 A/m2. These microbial and proteomic adaptations highlighted the intricate balance between microbial behavior and the physical environment, which could be tuned to optimize operations. The findings provided new insights into the design and enhancement of BES.
Collapse
Affiliation(s)
- Yue Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiying Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Mingrui Sui
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China.
| | - Jimeng Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaxin Wu
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China
| | - Ziyi Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
3
|
Markevičiūtė Z, Guerreschi A, Menin G, Malpei F, Varžinskas V. Wheat Bran and Saccharomyces Cerevisiae Biomass' Effect on Aerobic and Anaerobic Degradation Efficiency of Paper Composite. Microorganisms 2024; 12:2018. [PMID: 39458328 PMCID: PMC11509976 DOI: 10.3390/microorganisms12102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
This study is a continuation of research on sustainable food packaging materials made from locally available feedstock and industrial by-products within the Baltic Sea region. Its main focus is the impact of wheat bran filler and Saccharomyces cerevisiae additive, which was used to develop a novel bio-coating for paper composite packaging, on the biodegradation efficiency of paper composites under aerobic and anaerobic conditions. In this study, we analyzed the effect of 15% and 40% concentrations of wheat bran filler and Saccharomyces cerevisiae biomass on the biodegradation efficiency of paper composites. This research was conducted under controlled environmental conditions, with aerobic biodegradation tested at 46 °C in a compost-based mesophilic-thermophilic environment and anaerobic biodegradation tested at 55 °C in an active inoculum thermophilic environment. The results show that the presence of wheat bran filler significantly improves biodegradation efficiency compared to microcrystalline cellulose reference material. Under aerobic conditions, the biodegradation efficiency for the 40% wheat bran and yeast sample was 6.34%, compared to only 0.71% for the cellulose reference material. In anaerobic conditions, the 15% wheat bran and yeast sample showed a biodegradation efficiency of 96.62%, compared to 82.32% for the cellulose reference material.
Collapse
Affiliation(s)
- Zita Markevičiūtė
- Centre for Packaging Innovations and Research, Kaunas University of Technology, 51424 Kaunas, Lithuania
| | - Arianna Guerreschi
- Fabe Laboratory, Department of Civil, Environmental and Infrastructure Engineering, Politecnico di Milano, 20156 Milan, Italy
| | - Glauco Menin
- Environmental Engineering Laboratory, Department of Civil, Environmental and Infrastructure Engineering, Politecnico di Milano, 20156 Milan, Italy
| | - Francesca Malpei
- Department of Civil, Environmental and Infrastructure Engineering, Politecnico di Milano, 20156 Milan, Italy
| | - Visvaldas Varžinskas
- Institute of Environmental Engineering, Kaunas University of Technology, 44239 Kaunas, Lithuania
| |
Collapse
|
4
|
Ghahari A, Khosravi‐Darani K. Hurdle technology using enzymes and essential oil to remove biofilm and increase the effectiveness of this process with the microencapsulation method. Food Sci Nutr 2024; 12:8483-8492. [PMID: 39479686 PMCID: PMC11521719 DOI: 10.1002/fsn3.4377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
The formation of biofilm in different places and the failure to effectively remove it by the usual disinfection methods is due to its structure and the rich genetic resource available in it to deal with disinfectants. These impenetrable structures and diverse microbial genetics have caused biofilm pollution in different industries like the food industry, the medicine industry, the hospitals and the water distribution system, resulting in pathogenicity and reduction of industrial quality. An efficient way to deal with the resistant population of biofilm-forming microbes is the use of hurdle technology including enzymes and essential oils. Enzymes reduce the resistance of the biofilm structure due to degradation of its extracellular polymer matrix (EPS) by their abilities to break down the organic molecules, and then the essential oils weaken the cells by penetrating the lipid membrane of the cell and destroying its integrity; as a result, the biofilm will be destroyed. The advantage of this hurdle technology is the environmental friendly of both methods, which reduces concerns about the use of chemical disinfection methods, but on the other hand, due to the sensitivity of enzymes as biological agents also the expensiveness of this technique and the considerations of working with essential oils as volatile and unstable liquids should abandon the routine methods of applying this disinfectant to biofilm and go for the microencapsulation method, which as a protective system increases the effectiveness of enzymes and essential oils as antibiofilm agents.
Collapse
Affiliation(s)
- Ayda Ghahari
- Bioprocess Engineering DepartmentInstitute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Kianoush Khosravi‐Darani
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Le Montagner P, Bakhtiar Y, Miot-Sertier C, Guilbaud M, Albertin W, Moine V, Dols-Lafargue M, Masneuf-Pomarède I. Effect of abiotic and biotic factors on Brettanomyces bruxellensis bioadhesion properties. Food Microbiol 2024; 120:104480. [PMID: 38431326 DOI: 10.1016/j.fm.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Biofilms are central to microbial life because of the advantage that this mode of life provides, whereas the planktonic form is considered to be transient in the environment. During the winemaking process, grape must and wines host a wide diversity of microorganisms able to grow in biofilm. This is the case of Brettanomyces bruxellensis considered the most harmful spoilage yeast, due to its negative sensory effect on wine and its ability to colonise stressful environments. In this study, the effect of different biotic and abiotic factors on the bioadhesion and biofilm formation capacities of B. bruxellensis was analyzed. Ethanol concentration and pH had negligible effect on yeast surface properties, pseudohyphal cell formation or bioadhesion, while the strain and genetic group factors strongly modulated the phenotypes studied. From a biotic point of view, the presence of two different strains of B. bruxellensis did not lead to a synergistic effect. A competition between the strains was rather observed during biofilm formation which seemed to be driven by the strain with the highest bioadhesion capacity. Finally, the presence of wine bacteria reduced the bioadhesion of B. bruxellensis. Due to biofilm formation, O. oeni cells were observed attached to B. bruxellensis as well as extracellular matrix on the surface of the cells.
Collapse
Affiliation(s)
- Paul Le Montagner
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Biolaffort, Floirac, France
| | - Yacine Bakhtiar
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Cecile Miot-Sertier
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Morgan Guilbaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France
| | - Warren Albertin
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSMAC, Bordeaux INP, 33600, Pessac, France
| | | | - Marguerite Dols-Lafargue
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSMAC, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Bordeaux Sciences Agro, 33175, Gradignan, France.
| |
Collapse
|
6
|
Marra D, Orillo E, Toscano G, Petala M, Karapantsios TD, Caserta S. The role of air relative humidity on the wettability of Pseudomonas fluorescens AR11 biofilms. Colloids Surf B Biointerfaces 2024; 237:113831. [PMID: 38508084 DOI: 10.1016/j.colsurfb.2024.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Biofilms are complex porous materials formed by microorganisms, polysaccharides, proteins, eDNA, inorganic matter, and water. They are ubiquitous in various environmental niches and are known to grow at solid-liquid, solid-air and air-liquid interfaces, often causing problems in several industrial and sanitary fields. Their removal is a challenge in many applications and numerous studies have been conducted to identify promising chemical species as cleaning agents. While these substances target specific components of biofilm structure, the role of water content in biofilm, and how it can influence wettability and detergent absorption have been quite neglected in the literature. Estimating water content in biofilm is a challenging task due to its heterogeneity in morphology and chemical composition. In this study, we controlled water content in Pseudomonas fluorescens AR 11 biofilms grown on submerged glass slides by regulating environmental relative humidity after drying. Interfacial properties of biofilm were investigated by measuring wetting of water and soybean oil. The morphology of biofilm structure was evaluated using Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. The results showed that biofilm water content has a significant and measurable effect on its wettability, leading to the hypothesis that a preliminary control of water content can play a crucial role in biofilm removal process.
Collapse
Affiliation(s)
- Daniele Marra
- DICMaPI, Università di Napoli Federico II, P.le V.Tecchio 80, Napoli 80125, Italy
| | - Emilia Orillo
- DICMaPI, Università di Napoli Federico II, P.le V.Tecchio 80, Napoli 80125, Italy
| | - Giuseppe Toscano
- DICMaPI, Università di Napoli Federico II, P.le V.Tecchio 80, Napoli 80125, Italy
| | - Maria Petala
- Department of Civil Engineering, University Box 487, Thessaloniki 54 124, Greece
| | - Thodoris D Karapantsios
- Department of Chemical Technology and Industrial Chemistry, School of Chemistry, Aristotle University, University Box 116, 541 24 Thessaloniki, Greece
| | - Sergio Caserta
- DICMaPI, Università di Napoli Federico II, P.le V.Tecchio 80, Napoli 80125, Italy; CEINGE, Advanced Biotechnologies, Naples 80145, Italy.
| |
Collapse
|
7
|
Steyn HF, White LJ, Hilton KLF, Hiscock JR, Pohl CH. Supramolecular Self-Associating Amphiphiles Inhibit Biofilm Formation by the Critical Pathogens, Pseudomonas aeruginosa and Candida albicans. ACS OMEGA 2024; 9:1770-1785. [PMID: 38222503 PMCID: PMC10785623 DOI: 10.1021/acsomega.3c08425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
In 2019, 4.95 million deaths were directly attributed to antimicrobial-resistant bacterial infections globally. In addition, the mortality associated with fungal infections is estimated at 1.7 million annually, with many of these deaths attributed to species that are no longer susceptible to traditional therapeutic regimes. Herein, we demonstrate the use of a novel class of supramolecular self-associating amphiphilic (SSA) salts as antimicrobial agents against the critical pathogens Pseudomonas aeruginosa and Candida albicans. We also identify preliminary structure-activity relationships for this class of compound that will aid the development of next-generation SSAs demonstrating enhanced antibiofilm activity. To gain insight into the possible mode of action for these agents, a series of microscopy studies were performed, taking advantage of the intrinsic fluorescent nature of benzothiazole-substituted SSAs. Analysis of these data showed that the SSAs interact with the cell surface and that a benzothiazole-containing SSA inhibits hyphal formation by C. albicans.
Collapse
Affiliation(s)
- Hendrik
J. F. Steyn
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein, Free State 9301, South Africa
| | - Lisa J. White
- School
of Chemistry and Forensic Science, University
of Kent, Kent, Canterbury CT2 7NH, United Kingdom
| | - Kira L. F. Hilton
- School
of Chemistry and Forensic Science, University
of Kent, Kent, Canterbury CT2 7NH, United Kingdom
| | - Jennifer R. Hiscock
- School
of Chemistry and Forensic Science, University
of Kent, Kent, Canterbury CT2 7NH, United Kingdom
| | - Carolina H. Pohl
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein, Free State 9301, South Africa
| |
Collapse
|
8
|
Dergham Y, Le Coq D, Bridier A, Sanchez-Vizuete P, Jbara H, Deschamps J, Hamze K, Yoshida KI, Noirot-Gros MF, Briandet R. Bacillus subtilis NDmed, a model strain for biofilm genetic studies. Biofilm 2023; 6:100152. [PMID: 37694162 PMCID: PMC10485040 DOI: 10.1016/j.bioflm.2023.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
The Bacillus subtilis strain NDmed was isolated from an endoscope washer-disinfector in a medical environment. NDmed can form complex macrocolonies with highly wrinkled architectural structures on solid medium. In static liquid culture, it produces thick pellicles at the interface with air as well as remarkable highly protruding ''beanstalk-like'' submerged biofilm structures at the solid surface. Since these mucoid submerged structures are hyper-resistant to biocides, NDmed has the ability to protect pathogens embedded in mixed-species biofilms by sheltering them from the action of these agents. Additionally, this non-domesticated and highly biofilm forming strain has the propensity of being genetically manipulated. Due to all these properties, the NDmed strain becomes a valuable model for the study of B. subtilis biofilms. This review focuses on several studies performed with NDmed that have highlighted the sophisticated genetic dynamics at play during B. subtilis biofilm formation. Further studies in project using modern molecular tools of advanced technologies with this strain, will allow to deepen our knowledge on the emerging properties of multicellular bacterial life.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300, Fougères, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hadi Jbara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
9
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
10
|
The Gut Microbiota and Inflammatory Factors in Pediatric Appendicitis. DISEASE MARKERS 2022; 2022:1059445. [PMID: 35845131 PMCID: PMC9282992 DOI: 10.1155/2022/1059445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
Background. The study analyzed gut microflora’s composition and investigated the associations between the associations between gut dysbiosis and inflammatory indicators in pediatric patients with acute appendicitis. Methods. High-throughput sequencing and bioinformatics analysis were used to investigate the composition and diversity of gut microflora in 20 pediatric patients with acute appendicitis and 11 healthy children. Endpoints measured were operational taxonomic units (OTU) of gut microflora. The OTU and its abundance analysis, sample diversity analysis, principal component analysis of samples, differential analysis, and analysis of biomarkers were performed. Results. Overall fecal microbial richness and diversity were similar in patients and controls. Yet richness within the group of Bilophila, Eggerthella, Clostridium, Parvimonas, Megasphaera, Atopobium, Phascolarctobacterium, Adlercreutzia, Barnesiella, Klebsiella, Enterococcus, and Prevotella genera was higher in patients. Adlercreutzia was significantly positively correlated with IL-10, while the three other genera, comprising Klebsiella, Adlercreutzia, and Prevotella, were positively correlated with B cells level. Conclusion. Gut microbiome components are significantly different in pediatric patients with acute appendicitis and healthy children. The differential abundance of some genera is correlated with the production of inflammatory markers in appendicitis.
Collapse
|
11
|
Biofilm Formation by Pathogenic Bacteria: Applying a Staphylococcus aureus Model to Appraise Potential Targets for Therapeutic Intervention. Pathogens 2022; 11:pathogens11040388. [PMID: 35456063 PMCID: PMC9027693 DOI: 10.3390/pathogens11040388] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/02/2023] Open
Abstract
Carried in the nasal passages by up to 30% of humans, Staphylococcus aureus is recognized to be a successful opportunistic pathogen. It is a frequent cause of infections of the upper respiratory tract, including sinusitis, and of the skin, typically abscesses, as well as of food poisoning and medical device contamination. The antimicrobial resistance of such, often chronic, health conditions is underpinned by the unique structure of bacterial biofilm, which is the focus of increasing research to try to overcome this serious public health challenge. Due to the protective barrier of an exopolysaccharide matrix, bacteria that are embedded within biofilm are highly resistant both to an infected individual’s immune response and to any treating antibiotics. An in-depth appraisal of the stepwise progression of biofilm formation by S. aureus, used as a model infection for all cases of bacterial antibiotic resistance, has enhanced understanding of this complicated microscopic structure and served to highlight possible intervention targets for both patient cure and community infection control. While antibiotic therapy offers a practical means of treatment and prevention, the most favorable results are achieved in combination with other methods. This review provides an overview of S. aureus biofilm development, outlines the current range of anti-biofilm agents that are used against each stage and summarizes their relative merits.
Collapse
|