1
|
Benhadj M, Menasria T, Zaatout N, Ranque S. Genomic Insights and Antimicrobial Potential of Newly Streptomyces cavourensis Isolated from a Ramsar Wetland Ecosystem. Microorganisms 2025; 13:576. [PMID: 40142469 PMCID: PMC11945845 DOI: 10.3390/microorganisms13030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
The growing threat of antimicrobial resistance underscores the urgent need to identify new bioactive compounds. In this study, a Streptomyces strain, ACT158, was isolated from a Ramsar wetland ecosystem and found to exhibit broad-spectrum effects against Gram-positive and Gram-negative bacteria, as well as fungal pathogens. The active strain was characterized as S. cavourensis according to its morphology, phylogenetic analysis, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH). Whole-genome sequencing (WGS) and annotation revealed a genome size of 6.86 Mb with 5122 coding sequences linked to carbohydrate metabolism, secondary metabolite biosynthesis, and stress responses. Genome mining through antiSMASH revealed 32 biosynthetic gene clusters (BGCs), including those encoding polyketides, nonribosomal peptides, and terpenes, many of which showed low similarity to known clusters. Comparative genomic analysis, showing high genomic synteny with closely related strains. Unique genomic features of ACT158 included additional BGCs and distinct genes associated with biosynthesis pathways and stress adaptation. These findings highlight the strain's potential as a rich source of bioactive compounds and provide insights into its genomic basis for antimicrobial production and its ecological and biotechnological significance.
Collapse
Affiliation(s)
- Mabrouka Benhadj
- Biomolecules and Application Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University, 12002 Tebessa, Algeria;
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University, 12002 Tebessa, Algeria
| | - Taha Menasria
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078 Batna, Algeria; (T.M.); (N.Z.)
| | - Nawel Zaatout
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078 Batna, Algeria; (T.M.); (N.Z.)
| | - Stéphane Ranque
- Aix Marseille University, SSA, RITMES, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
2
|
Hamzaoui Z, Ferjani S, Medini I, Charaa L, Landolsi I, Ben Ali R, Khaled W, Chammam S, Abid S, Kanzari L, Ferjani A, Fakhfakh A, Kebaier D, Bouslah Z, Ben Sassi M, Trabelsi S, Boutiba-Ben Boubaker I. Genomic surveillance of SARS-CoV-2 in North Africa: 4 years of GISAID data sharing. IJID REGIONS 2024; 11:100356. [PMID: 38655560 PMCID: PMC11035039 DOI: 10.1016/j.ijregi.2024.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Objectives This study aimed to construct geographically, temporally, and epidemiologically representative data sets for SARS-CoV-2 in North Africa, focusing on Variants of Concern (VOCs), Variants of Interest (VOIs), and Variants Under Monitoring (VUMs). Methods SARS-CoV-2 genomic sequences and metadata from the EpiCoV database via the Global Initiative on Sharing All Influenza Data platform were analyzed. Data analysis included cases, deaths, demographics, patient status, sequencing technologies, and variant analysis. Results A comprehensive analysis of 10,783 viral genomic sequences from six North African countries revealed notable insights. SARS-CoV-2 sampling methods lack standardization, with a majority of countries lacking clear strategies. Over 59% of analyzed genomes lack essential clinical and demographic metadata, including patient age, sex, underlying health conditions, and clinical outcomes, which are essential for comprehensive genomic analysis and epidemiological studies, as submitted to the Global Initiative on Sharing All Influenza Data. Morocco reported the highest number of confirmed COVID-19 cases (1,272,490), whereas Tunisia leads in reported deaths (29,341), emphasizing regional variations in the pandemic's impact. The GRA clade emerged as predominant in North African countries. The lineage analysis showcased a diversity of 190 lineages in Egypt, 26 in Libya, 121 in Tunisia, 90 in Algeria, 146 in Morocco, and 10 in Mauritania. The temporal dynamics of SARS-CoV-2 variants revealed distinct waves driven by different variants. Conclusions This study contributes valuable insights into the genomic landscape of SARS-CoV-2 in North Africa, highlighting the importance of genomic surveillance in understanding viral dynamics and informing public health strategies.
Collapse
Affiliation(s)
- Zaineb Hamzaoui
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sana Ferjani
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ines Medini
- National Center Chalbibelkahia of Pharmacovigilance of Tunis, Laboratory of Clinical Pharmacology, Tunis, Tunisia
| | - Latifa Charaa
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ichrak Landolsi
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Roua Ben Ali
- National Center Chalbibelkahia of Pharmacovigilance of Tunis, Laboratory of Clinical Pharmacology, Tunis, Tunisia
| | - Wissal Khaled
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Sarra Chammam
- National Center Chalbibelkahia of Pharmacovigilance of Tunis, Laboratory of Clinical Pharmacology, Tunis, Tunisia
| | - Salma Abid
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Lamia Kanzari
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Asma Ferjani
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahmed Fakhfakh
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Dhouha Kebaier
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Zoubeir Bouslah
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Mouna Ben Sassi
- National Center Chalbibelkahia of Pharmacovigilance of Tunis, Laboratory of Clinical Pharmacology, Tunis, Tunisia
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis Tunisia
| | - Sameh Trabelsi
- National Center Chalbibelkahia of Pharmacovigilance of Tunis, Laboratory of Clinical Pharmacology, Tunis, Tunisia
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis Tunisia
| | - Ilhem Boutiba-Ben Boubaker
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| |
Collapse
|
3
|
Sarkar A, Omar S, Alshareef A, Fanous K, Sarker S, Alroobi H, Zamir F, Yousef M, Zakaria D. The relative prevalence of the Omicron variant within SARS-CoV-2 infected cohorts in different countries: A systematic review. Hum Vaccin Immunother 2023; 19:2212568. [PMID: 37254497 PMCID: PMC10234134 DOI: 10.1080/21645515.2023.2212568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 was detected in October 2021 and exhibited high transmissibility, immune evasion, and reduced severity when compared to the earlier variants. The lesser vaccine effectiveness against Omicron and its reduced severity created vaccination hesitancy among the public. This review compiled data reporting the relative prevalence of Omicron as compared to the early variants to give an insight into the existing variants, which may shape the decisions regarding the targets of the newly developed vaccines. Complied data revealed more than 90% prevalence within the infected cohorts in some countries. The BA.1 subvariant predominated over the BA.2 during the early stages of the Omicron wave. Moreover, BA.4/BA.5 subvariants were detected in South Africa, USA and Italy between October 2021 and April 2022. It is therefore important to develop vaccines that protect against Omicron as well as the early variants, which are known to cause more severe complications.
Collapse
Affiliation(s)
| | - Sara Omar
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Aya Alshareef
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Fanous
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shaunak Sarker
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hasan Alroobi
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Fahad Zamir
- Premedical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Mahmoud Yousef
- Premedical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Dalia Zakaria
- Premedical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
4
|
Ahmadi AS, Shafiei-Jandaghi NZ, Sadeghi K, Nejati A, Zadheidar S, Mokhtari-Azad T, Yavarian J. Comparison of Circulating Variants during the Beginning, Middle and the End of the 4th Wave of COVID-19 in Tehran Province, Iran in 2021. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2621-2629. [PMID: 38435775 PMCID: PMC10903313 DOI: 10.18502/ijph.v52i12.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/11/2023] [Indexed: 03/05/2024]
Abstract
Background Whole viral genome sequencing with next generation sequencing (NGS) technique is useful tool for determining the diversity of variants and mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study we have attempted to characterize the mutations and circulating variants of the SARSCoV-2 genome during the 4th wave of COVID-19 pandemic in Tehran, Iran in 2021. Methods We performed complete genome sequencing of 15 SARS-CoV-2 detected from 15 COVID-19 patients during the 4th wave of COVID-19 pandemic with NGS. Three groups of the patients at the beginning, middle and the end of the 4th wave were compared together. Results We detected alpha and delta variants during the 4th wave of the pandemic. The results illustrated a dominance of amino acid substitution D614G in spike, and the most frequent mutants were N-R203K, G204R, S235F, nsp12-P323L, nsp6-G106del, G107del and F108del. Conclusion The detection of the virus mutations is a useful procedure for identifying the virus behavior and its genetic evolution in order to improve the efficacy of the monitoring strategies and therapeutic measures.
Collapse
Affiliation(s)
- Akram Sadat Ahmadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaveh Sadeghi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sevrin Zadheidar
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Emad R, Naga IS. Comparative genotyping of SARS-CoV-2 among Egyptian patients: near-full length genomic sequences versus selected spike and nucleocapsid regions. Med Microbiol Immunol 2023; 212:437-446. [PMID: 37789185 PMCID: PMC10618331 DOI: 10.1007/s00430-023-00783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Several tools have been developed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genotyping based on either whole genome or spike sequencing. We aimed to highlight the molecular epidemiological landscape of SARS-CoV-2 in Egypt since the start of the pandemic, to describe discrepancies between the 3 typing tools: Global Initiative on Sharing Avian Influenza Data (GISAID), Nextclade, and Phylogenetic Assignment of Named Global Outbreak Lineages (PANGOLIN) and to assess the fitness of spike and nucleocapsid regions for lineage assignment compared to the whole genome. A total of 3935 sequences isolated from Egypt (March 2020-2023) were retrieved from the GISAID database. A subset of data (n = 1212) with high coverage whole genome was used for tool discrimination and agreement analyses. Among 1212 sequences, the highest discriminatory power was 0.895 for PANGOLIN, followed by GISAID (0.872) and Nextclade (0.866). There was a statistically significant difference (p = 0.0418) between lineages assigned via spike (30%) and nucleocapsid (46%) compared to their whole genome-assigned lineages. The first 3 pandemic waves were dominated by B.1, followed by C.36 and then C.36.3, while the fourth to sixth waves were dominated by the B.1.617.2, BA, and BA.5.2 lineages, respectively. Current shift in lineage typing to recombinant forms. The 3 typing tools showed comparable discrimination among SARS-CoV-2 lineages. The nucleocapsid region could be used for lineage assignment.
Collapse
Affiliation(s)
- Rasha Emad
- Alexandria Main University Hospital, Alexandria, Egypt.
| | - Iman S Naga
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Nduwimana C, Nzoyikorera N, Ndihokubwayo A, Ihorimbere T, Nibogora C, Ndoreraho A, Hajayandi O, Bizimana JC, Diawara I, Niyonizigiye D, Nyandwi J. Genomic surveillance of severe acute respiratory syndrome coronavirus 2 in Burundi, from May 2021 to January 2022. BMC Genomics 2023; 24:312. [PMID: 37301830 DOI: 10.1186/s12864-023-09420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The emergence and rapid spread of new severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) variants have challenged the control of the COVID-19 pandemic globally. Burundi was not spared by that pandemic, but the genetic diversity, evolution, and epidemiology of those variants in the country remained poorly understood. The present study sought to investigate the role of different SARS-COV-2 variants in the successive COVID-19 waves experienced in Burundi and the impact of their evolution on the course of that pandemic. We conducted a cross-sectional descriptive study using positive SARS-COV-2 samples for genomic sequencing. Subsequently, we performed statistical and bioinformatics analyses of the genome sequences in light of available metadata. RESULTS In total, we documented 27 PANGO lineages of which BA.1, B.1.617.2, AY.46, AY.122, and BA.1.1, all VOCs, accounted for 83.15% of all the genomes isolated in Burundi from May 2021 to January 2022. Delta (B.1.617.2) and its descendants predominated the peak observed in July-October 2021. It replaced the previously predominant B.1.351 lineage. It was itself subsequently replaced by Omicron (B.1.1.529, BA.1, and BA.1.1). Furthermore, we identified amino acid mutations including E484K, D614G, and L452R known to increase infectivity and immune escape in the spike proteins of Delta and Omicron variants isolated in Burundi. The SARS-COV-2 genomes from imported and community-detected cases were genetically closely related. CONCLUSION The global emergence of SARS-COV-2 VOCs and their subsequent introductions in Burundi was accompanied by new peaks (waves) of COVID-19. The relaxation of travel restrictions and the mutations occurring in the virus genome played an important role in the introduction and the spread of new SARS-COV-2 variants in the country. It is of utmost importance to strengthen the genomic surveillance of SARS-COV-2, enhance the protection by increasing the SARS-COV-2 vaccine coverage, and adjust the public health and social measures ahead of the emergence or introduction of new SARS-COV-2 VOCs in the country.
Collapse
Affiliation(s)
- Cassien Nduwimana
- National Reference Laboratory, National Institute of Public Health, Bujumbura, Burundi.
| | - Néhémie Nzoyikorera
- National Reference Laboratory, National Institute of Public Health, Bujumbura, Burundi
- Mohamed VI University of Health Sciences (UM6SS), Higher Institute of Biosciences and Biotechnology, Casablanca, Morocco
- Mohamed VI Center for Research & Innovation, Laboratory of Microbial Biotechnology and Infectiology Research, Mohamed VI University of Health Sciences (UM6SS), Rabat, Morocco
| | | | - Théogène Ihorimbere
- National Reference Laboratory, National Institute of Public Health, Bujumbura, Burundi
| | - Célestin Nibogora
- National Reference Laboratory, National Institute of Public Health, Bujumbura, Burundi
| | - Adolphe Ndoreraho
- National Institute of Public Health, Ministry of Public Health and the Fight against AIDS, Bujumbura, Burundi
| | - Oscar Hajayandi
- National Reference Laboratory, National Institute of Public Health, Bujumbura, Burundi
| | - Jean Claude Bizimana
- Public Health Emergency Operation Center, Ministry of Public Health and the Fight against AIDS, Bujumbura, Burundi
| | - Idrissa Diawara
- Mohamed VI University of Health Sciences (UM6SS), Higher Institute of Biosciences and Biotechnology, Casablanca, Morocco
- Mohamed VI Center for Research & Innovation, Laboratory of Microbial Biotechnology and Infectiology Research, Mohamed VI University of Health Sciences (UM6SS), Rabat, Morocco
| | - Dionis Niyonizigiye
- National Institute of Public Health, Ministry of Public Health and the Fight against AIDS, Bujumbura, Burundi
| | - Joseph Nyandwi
- National Institute of Public Health, Ministry of Public Health and the Fight against AIDS, Bujumbura, Burundi
- Faculté de Médecine, Université du Burundi, Bujumbura, Burundi
| |
Collapse
|
7
|
Aliabadi N, Jamaliduost M, Pouladfar G, Marandi NH, Ziyaeyan M. Characterization and phylogenetic analysis of Iranian SARS-CoV-2 genomes: A phylogenomic study. Health Sci Rep 2023; 6:e1052. [PMID: 36686884 PMCID: PMC9841325 DOI: 10.1002/hsr2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/27/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background and Aim Characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on analyzing the evolution and mutations of viruses is crucial for tracking viral infections, potential mutants, and other pathogens. The purpose was to study the complete sequences of SARS-CoV-2 to reveal genetic distance and mutation rate among different provinces of Iran. Methods As of March 2020-April 2021, a total of 131 SARS-CoV-2 whole genome sequences submitted from Tehran and 133 SARS-CoV-2 full-length sequences from 24 cities with high coverage submitted to EpiCoV GISAID database were analyzed to infer clades and mutation annotation compared with the wild-type variant Wuhan-Hu-1. Results The results of variant annotation were revealed 11,204 and 9468 distinct genomes were identified among the samples from different cities and Tehran, respectively. The phylogenetic analysis of genomic sequences showed the presence of eight GISAID clades, namely GH, GR, O, GRY, G, GK, L, and GV, and six Nextstrain clades; that is, 19A, 20A, 20B, 20I (alpha, V1), 20H (Beta, V2), and 21I (Delta) in Iran. The GH (GISAID clade), 20A (Nextstrain clade), and B.1 (Pango lineage) were predominant in Iran. Notably, analysis of the spike protein revealed D614G mutation (S_D614G) in 56% of the sequences. Also, the delta variant of the coronavirus, the super-infectious strain that was first identified among the sequences submitted from the southern cities of the country such as Zahedan, Yazd and Bushehr, and most likely from these places to other cities of Iran as well has expanded. Conclusions Our results indicate that most of the circulated viruses in Iran in the early time of the pandemic had collected in eight GISAID clades. Therefore, a continuous and extensive genome sequence analysis would be necessary to understand the genomic epidemiology of SARS-CoV-2 in Iran.
Collapse
Affiliation(s)
- Nasrin Aliabadi
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| | - Marzieh Jamaliduost
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| | - Gholamreza Pouladfar
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| | - Nahid H. Marandi
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| | - Mazyar Ziyaeyan
- Department of Clinical Virology, Clinical Microbiology Research Center, Shiraz University of Medical SciencesNamazi HospitalShirazIran
| |
Collapse
|
8
|
Menasria T, Monteoliva-Sánchez M, Benhadj M, Benammar L, Boukoucha M, Aguilera M. Unraveling the enzymatic and antibacterial potential of rare halophilic actinomycetes from Algerian hypersaline wetland ecosystems. J Basic Microbiol 2022; 62:1202-1215. [PMID: 35945171 DOI: 10.1002/jobm.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/18/2022] [Accepted: 07/10/2022] [Indexed: 11/07/2022]
Abstract
The study aimed to isolate rare halophilic actinomycetes from hypersaline soils of Algerian inland Wetland Ecosystems "Sebkhas-Chotts" located in arid and hot hyperarid lands with international importance under the Ramsar Convention and to explore their enzyme-producing and antibacterial abilities. The halophilic actinomycetes were selectively isolated using agar-rich media supplemented with 5, 10, and 15% (W/V) of total salts. Thirty-one isolates were obtained and 16S rRNA gene sequencing analysis revealed the presence of members affiliated to rare halophilic actinobacterial genera (Actinopolyspora and Nocardiopsis) accounting for 74.19% (23 isolates out of 31) and 25.8% (8 isolates), respectively. Both phylotypes are alkalitolerant and halophilic thermotolerant actinomycetes displaying significant hydrolytic activities relative to (amylase, asparaginase, cellulase, esterase, glutaminase, inulinase, protease, pectinase, xylanase), and over 96% of tested isolates exhibited all common enzymes, mainly active at 10% of growing salt. In addition, high antibacterial activity was observed against Bacillus cereus, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus. The findings showed that saline wetlands ecosystems represent a rich reservoir for the isolation of significant rare halophilic actinomycetes with potential adaptive features and valuable sources for novel bioactive metabolites and biocatalysts of biotechnological interest.
Collapse
Affiliation(s)
- Taha Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | - Mabrouka Benhadj
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria
| | - Leyla Benammar
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences University of Batna, Batna, Algeria
| | - Mourad Boukoucha
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|