1
|
Li Y, Zhang S, Chen Z, Huang W, Liu Q, Fang H, Chi B, Yang N, Zhang Q. Deciphering the impact of organic loading rate and digestate recirculation on the occurrence patterns of antibiotics and antibiotic resistance genes in dry anaerobic digestion of kitchen waste. WATER RESEARCH 2024; 261:122005. [PMID: 38968733 DOI: 10.1016/j.watres.2024.122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD.
Collapse
Affiliation(s)
- Yanzeng Li
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China.
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizhao Huang
- Xiamen Xinyuan Environmental Service Co., LTD., Xiamen 361000, China
| | - Qin Liu
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Hongda Fang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Bin Chi
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Ningbo Yang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Qian Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
2
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
3
|
Zhu J, Dai Y, Tang B, Zhang H. The association between serum heat shock protein 72 and intestinal permeability with intestinal microbiota and clinical severity in patients with cerebral infarction. Front Med (Lausanne) 2024; 10:1302460. [PMID: 38264043 PMCID: PMC10803404 DOI: 10.3389/fmed.2023.1302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Objectives We aimed to compare serum heat shock protein 72 (HSP72) and intestinal permeability in patients with cerebral infarction (CI) and healthy individuals to reveal their correlations and link to gut microbiota alterations and clinical severity of CI. Methods and results Stool samples of 50 patients with CI and 46 healthy volunteers were analyzed through 16S rRNA gene sequencing to characterize intestinal flora profiles. Serum HSP72 and zonulin were assayed using enzyme-linked immunoassay (ELISA). The obtained data were then subjected to comparative and correlative analysis. We found that the levels of zonulin and serum HSP72 were significantly higher in the CI group compared to the healthy group. Serum HSP72 and zonulin levels were positively correlated in the CI group and correlated positively with the clinical severity of CI. β diversity showed significant differences in intestinal microbiota composition between the two groups. In the CI patient group, the abundance of bacteria Eubacterium_fissicatena_group, Eubacterium_eligens_group, and Romboutsia manifested a remarkably positive correlation with serum HSP72. The abundance of bacteria Eubacterium_fissicatena_group and Acetivibrio had a significantly positive correlation with zonulin levels. Conclusion Our findings indicated that an increase in serum HSP72 and zonulin levels was manifested in patients with CI and was related to specific gut microbiota alterations and the clinical severity of CI.
Collapse
Affiliation(s)
| | | | - Bo Tang
- Department of Neurology, Hangzhou First People’s Hospital, Hangzhou, China
| | - Hao Zhang
- Department of Neurology, Hangzhou First People’s Hospital, Hangzhou, China
| |
Collapse
|
4
|
Grenier V, Laur J, Gonzalez E, Pitre FE. Glyphosate has a negligible impact on bacterial diversity and dynamics during composting. Environ Microbiol 2023; 25:2897-2912. [PMID: 36975075 DOI: 10.1111/1462-2920.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The herbicide glyphosate has several potential entry points into composting sites and its impact on composting processes has not yet been evaluated. To assess its impact on bacterial diversity and abundance as well as on community composition and dynamics, we conducted a mesocosm experiment at the Montreal Botanical Garden. Glyphosate had no effect on physicochemical property evolution during composting, while it was completely dissipated by the end of the experiment. Sampling at Days 0, 2, 28 and 112 of the process followed by 16S rRNA amplicon sequencing also found no effect of glyphosate on species richness and community composition. Differential abundance analyses revealed an increase of a few taxa in the presence of glyphosate, namely TRA3-20 (order Polyangiales), Pedosphaeraceae and BIrii41 (order Burkholderiales) after 28 days. In addition, five amplicon sequence variants (ASVs) had lower relative abundance in the glyphosate treatment compared to the control on Day 2, namely Comamonadaceae, Pseudomonas sp., Streptomyces sp., Thermoclostridium sp. and Actinomadura keratinilytica, while two ASVs were less abundant on Day 112, namely Pedomicrobium sp. and Pseudorhodoplanes sp. Most differences in abundance were measured between the different sampling points within each treatment. These results present glyphosate as a poor determinant of species recruitment during composting.
Collapse
Affiliation(s)
- Vanessa Grenier
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- Institut de recherche en biologie végétale, Montréal, Québec, Canada
| | - Joan Laur
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- Institut de recherche en biologie végétale, Montréal, Québec, Canada
- Montreal Botanical Garden, Montreal, Québec, Canada
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Frederic E Pitre
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- Institut de recherche en biologie végétale, Montréal, Québec, Canada
- Montreal Botanical Garden, Montreal, Québec, Canada
| |
Collapse
|
5
|
Hasaka S, Sakamoto S, Fujii K. The Potential of Digested Sludge-Assimilating Microflora for Biogas Production from Food Processing Wastes. Microorganisms 2023; 11:2321. [PMID: 37764166 PMCID: PMC10535770 DOI: 10.3390/microorganisms11092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Food processing wastes (FPWs) are residues generated in food manufacturing, and their composition varies depending on the type of food product being manufactured. Therefore, selecting and acclimatizing seed microflora during the initiation of biogas production is crucial for optimal outcomes. The present study examined the biogas production capabilities of digested sludge-assimilating and biogas-yielding soil (DABYS) and enteric (DABYE) microflorae when used as seed cultures for biogas production from FPWs. After subculturing and feeding these microbial seeds with various FPWs, we assessed their biogas-producing abilities. The subcultures produced biogas from many FPWs, except orange peel, suggesting that the heterogeneity of the bacterial members in the seed microflora facilitates quick adaptation to FPWs. Microflorae fed with animal-derived FPWs contained several methanogenic archaeal families and produced methane. In contrast, microflorae fed with vegetable-, fruit-, and crop-derived FPWs generated hydrogen, and methanogenic archaeal populations were diminished by repeated subculturing. The subcultured microflorae appear to hydrolyze carbohydrates and protein in FPWs using cellulase, pectinase, or protease. Despite needing enhancements in biogas yield for future industrial scale-up, the DABYS and DABYE microflorae demonstrate robust adaptability to various FPWs.
Collapse
Affiliation(s)
- Sato Hasaka
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Saki Sakamoto
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Katsuhiko Fujii
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
- Applied Chemistry and Chemical Engineering Program, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| |
Collapse
|
6
|
Zhao J, Yao Y, Li D, Zhu W, Xiao H, Xie M, Xiong Y, Wu J, Ni Q, Zhang M, Xu H. Metagenome and metabolome insights into the energy compensation and exogenous toxin degradation of gut microbiota in high-altitude rhesus macaques (Macaca mulatta). NPJ Biofilms Microbiomes 2023; 9:20. [PMID: 37081021 PMCID: PMC10119431 DOI: 10.1038/s41522-023-00387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
There have been many reports on the genetic mechanism in rhesus macaques (RMs) for environmental adaptation to high altitudes, but the synergistic involvement of gut microbiota in this adaptation remains unclear. Here we performed fecal metagenomic and metabolomic studies on samples from high- and low-altitude populations to assess the synergistic role of gut microbiota in the adaptation of RMs to high-altitude environments. Microbiota taxonomic annotation yielded 7471 microbiota species. There were 37 bacterial species whose abundance was significantly enriched in the high-altitude populations, 16 of which were previously reported to be related to the host's dietary digestion and energy metabolism. Further functional gene enrichment found a stronger potential for gut microbiota to synthesize energy substrate acetyl-CoA using CO2 and energy substrate pyruvate using oxaloacetate, as well as a stronger potential to transform acetyl-CoA to energy substrate acetate in high-altitude populations. Interestingly, there were no apparent differences between low-altitude and high-altitude populations in terms of genes enriched in the main pathways by which the microbiota consumed the three energy substrates, and none of the three energy substrates were detected in the fecal metabolites. These results strongly suggest that gut microbiota plays an important energy compensatory role that helps RMs to adapt to high-altitude environments. Further functional enrichment after metabolite source analysis indicated the abundance of metabolites related to the degradation of exogenous toxins was also significantly higher in high-altitude populations, which suggested a contributory role of gut microbiota to the degradation of exogenous toxins in wild RMs adapted to high-altitude environments.
Collapse
Affiliation(s)
- Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wei Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
7
|
González-Siso MI, Becerra M. Novel Microbial Enzymes with Industrial Applications. Microorganisms 2023; 11:microorganisms11040986. [PMID: 37110409 PMCID: PMC10144865 DOI: 10.3390/microorganisms11040986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Eberhardt et al [...].
Collapse
Affiliation(s)
- María-Isabel González-Siso
- CICA-Centro Interdisciplinar de Química e Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manuel Becerra
- CICA-Centro Interdisciplinar de Química e Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
8
|
Overexpression of LAS21 in Cellulase-Displaying Saccharomyces cerevisiae for High-Yield Ethanol Production from Pretreated Sugarcane Bagasse. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The valorization of lignocellulosic feedstocks into biofuels and biochemicals has received much attention due to its environmental friendliness and sustainability. However, engineering an ideal microorganism that can both produce sufficient cellulases and ferment ethanol is highly challenging. In this study, we have tested seven different genes that are involved in glycosylphosphatidylinositol (GPI) biosynthesis and remodeling for the improvement of cellulase activity tethered on the S. cerevisiae cell surface. It was found that the overexpression of LAS21 can improve β-glucosidase activity by 48.8% compared to the original strain. Then, the three cellulase genes (cellobiohydrolase, endoglucanase, and β-glucosidase) and the LAS21 gene were co-introduced into a diploid thermotolerant S. cerevisiae strain by a multiple-round transformation approach, resulting in the cellulolytic ECBLCCE5 strain. Further optimization of the bioprocess parameters was found to enhance the ethanol yield of the ECBLCCE5 strain. Scaling up the valorization of pretreated sugarcane bagasses in a 1 L bioreactor resulted in a maximum ethanol concentration of 28.0 g/L (86.5% of theoretical yield). Our study provides a promising way to improve the economic viability of second-generation ethanol production. Moreover, the engineering of genes involved in GPI biosynthesis and remodeling can be applied to other yeast cell surface display applications.
Collapse
|
9
|
Zhai Z, Su J, Ali A, Xu L, Wahid F. Biological denitrification potential of cellulase-producing Cupriavidus sp. ZY7 and denitrifying Aquabacterium sp. XL4 at low carbon-to-nitrogen ratio: Performance and synergistic properties. BIORESOURCE TECHNOLOGY 2022; 360:127600. [PMID: 35820558 DOI: 10.1016/j.biortech.2022.127600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
This study emphasizes on the cellulase production characteristics of strain ZY7 and its collaboration with nitrate-dependent ferrous oxidizing (NFO) strain XL4 to achieve efficient denitrification at low carbon-to-nitrogen (C/N) ratio. Results indicated that the denitrification efficiency increased from 65.47 to 97.99% at 24 h after co-culture at C/N of 1.0. Three-dimensional fluorescence excitation-emission matrix (3D-EEM) showed significant changes in the intensity of soluble microbial products (SMP), fulvic-like materials, and aromatic proteins after co-culture. Bio-precipitates were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), and X-ray diffraction (XRD), which showed that cellulose structure was disrupted and the metabolites were potential carbon source for denitrification. In addition, cellulase activity suggested that the hydrolysis of β-1,4-glycosidic bonds and oligosaccharides may be the rate-limiting steps in cellulose degradation. This work promoted the understanding of denitrification characteristics of co-culture and expanded the application of cellulose degrading bacteria in sewage treatment.
Collapse
Affiliation(s)
- Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fazli Wahid
- Department of Agriculture, The University of Swabi, Swabi 23561, Pakistan
| |
Collapse
|