1
|
Zampara A, Gencay YE, Brøndsted L, Sørensen MCH. Campycins are novel broad-spectrum antibacterials killing Campylobacter jejuni. Appl Microbiol Biotechnol 2024; 108:484. [PMID: 39382702 PMCID: PMC11464564 DOI: 10.1007/s00253-024-13317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
Pyocins are high molecular weight bacteriocins produced by Pseudomonas aeruginosa that can be retargeted to new bacterial species by exchanging the pyocin tail fibers with bacteriophage receptor binding proteins (RBPs). Here, we develop retargeted pyocins called campycins as new antibacterials to precisely and effectively kill the major foodborne pathogen Campylobacter jejuni. We used two diverse RBPs (H-fibers) encoded by CJIE1 prophages found in the genomes of C. jejuni strains CAMSA2147 and RM1221 to construct campycin 1 and campycin 2, respectively. Campycins 1 and 2 could target all C. jejuni strains tested due to complementary antibacterial spectra. In addition, both campycins led to more than 3 log reductions in C. jejuni counts under microaerobic conditions at 42 °C, whereas the killing efficiency was less efficient under anaerobic conditions at 5 °C. Furthermore, we discovered that both H-fibers used to construct the campycins bind to the essential major outer membrane protein (MOMP) present in all C. jejuni in a strain-specific manner. Protein sequence alignment and structural modeling suggest that the highly variable extracellular loops of MOMP form the binding sites of the diverse H-fibers. Further in silico analyses of 5000 MOMP sequences indicated that the protein falls into three major clades predicted to be targeted by either campycin 1 or campycin 2. Thus, campycins are promising antibacterials against C. jejuni and are expected to broadly target numerous strains of this human pathogen in nature and agriculture. KEY POINTS: • Campycins are engineered R-type pyocins containing H-fibers from C. jejuni prophages • Campycins reduce C. jejuni counts by >3 logs at conditions promoting growth • Campycins bind to the essential outer membrane protein MOMP in a strain-dependent way.
Collapse
Affiliation(s)
- Athina Zampara
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Present Address: SNIPR Biome, Lersø Parkallé 44, 2100, Copenhagen, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
2
|
Ostenfeld LJ, Sørensen AN, Neve H, Vitt A, Klumpp J, Sørensen MCH. A hybrid receptor binding protein enables phage F341 infection of Campylobacter by binding to flagella and lipooligosaccharides. Front Microbiol 2024; 15:1358909. [PMID: 38380094 PMCID: PMC10877375 DOI: 10.3389/fmicb.2024.1358909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Flagellotropic bacteriophages are interesting candidates as therapeutics against pathogenic bacteria dependent on flagellar motility for colonization and causing disease. Yet, phage resistance other than loss of motility has been scarcely studied. Here we developed a soft agar assay to study flagellotropic phage F341 resistance in motile Campylobacter jejuni. We found that phage adsorption was prevented by diverse genetic mutations in the lipooligosaccharides forming the secondary receptor of phage F341. Genome sequencing showed phage F341 belongs to the Fletchervirus genus otherwise comprising capsular-dependent C. jejuni phages. Interestingly, phage F341 encodes a hybrid receptor binding protein (RBP) predicted as a short tail fiber showing partial similarity to RBP1 encoded by capsular-dependent Fletchervirus, but with a receptor binding domain similar to tail fiber protein H of C. jejuni CJIE1 prophages. Thus, C. jejuni prophages may represent a genetic pool from where lytic Fletchervirus phages can acquire new traits like recognition of new receptors.
Collapse
Affiliation(s)
- Line Jensen Ostenfeld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Horst Neve
- Department of Microbiology and Biotechnology, Max-Rubner Institut, Kiel, Germany
| | - Amira Vitt
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Piña-González AM, Castelán-Sánchez HG, Hurtado-Ramírez JM, López-Leal G. Campylobacter prophage diversity reveals pervasive recombination between prophages from different Campylobacter species. Microbiol Spectr 2024; 12:e0279523. [PMID: 38088548 PMCID: PMC10782988 DOI: 10.1128/spectrum.02795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Prophages play an important role in shaping the genetic diversity and evolution of their hosts. Acquisition or loss of prophages can lead to genomic variations, including changes in the bacterial phenotype promoted by recombination events, genetic repertoire exchanges and dissemination of virulence factors, and antibiotic resistance. By studying prophages in Campylobacter species, scientists can gain insights into the evolutionary patterns, pathogenicity mechanisms, epidemiology, and population dynamics of these species. This has implications for public health, antibiotic resistance surveillance, and the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Adán Manuel Piña-González
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Hugo G. Castelán-Sánchez
- Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Humanidades, Ciudad de México, México
| | | | - Gamaliel López-Leal
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
5
|
Morais D, Tanoeiro L, Marques AT, Gonçalves T, Duarte A, Matos APA, Vital JS, Cruz MEM, Carvalheiro MC, Anes E, Vítor JMB, Gaspar MM, Vale FF. Liposomal Delivery of Newly Identified Prophage Lysins in a Pseudomonas aeruginosa Model. Int J Mol Sci 2022; 23:ijms231710143. [PMID: 36077542 PMCID: PMC9456237 DOI: 10.3390/ijms231710143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium that presents resistance to several antibiotics, thus, representing a major threat to human and animal health. Phage-derived products, namely lysins, or peptidoglycan-hydrolyzing enzymes, can be an effective weapon against antibiotic-resistant bacteria. Whereas in Gram-positive bacteria, lysis from without is facilitated by the exposed peptidoglycan layer, this is not possible in the outer membrane-protected peptidoglycan of Gram-negative bacteria. Here, we suggest the encapsulation of lysins in liposomes as a delivery system against Gram-negative bacteria, using the model of P. aeruginosa. Bioinformatic analysis allowed for the identification of 38 distinct complete prophages within 66 P. aeruginosa genomes (16 of which newly sequenced) and led to the identification of 19 lysins of diverse sequence and function, 5 of which proceeded to wet lab analysis. The four purifiable lysins showed hydrolytic activity against Gram-positive bacterial lawns and, on zymogram assays, constituted of autoclaved P. aeruginosa cells. Additionally, lysins Pa7 and Pa119 combined with an outer membrane permeabilizer showed activity against P. aeruginosa cells. These two lysins were successfully encapsulated in DPPC:DOPE:CHEMS (molar ratio 4:4:2) liposomes with an average encapsulation efficiency of 33.33% and 32.30%, respectively. The application of the encapsulated lysins to the model P. aeruginosa led to a reduction in cell viability and resulted in cell lysis as observed in MTT cell viability assays and electron microscopy. In sum, we report here that prophages may be important sources of new enzybiotics, with prophage lysins showing high diversity and activity. In addition, these enzybiotics following their incorporation in liposomes were able to potentiate their antibacterial effect against the Gram-negative bacteria P. aeruginosa, used as the model.
Collapse
Affiliation(s)
- Diana Morais
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Andreia T. Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Tiago Gonçalves
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior Egas Moniz, Quinta da Granja, 2829-511 Monte da Caparica, Portugal
| | - António Pedro Alves Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior Egas Moniz, Quinta da Granja, 2829-511 Monte da Caparica, Portugal
| | - Joana S. Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Maria Eugénia Meirinhos Cruz
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Manuela Colla Carvalheiro
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jorge M. B. Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: or (M.M.G.); or (F.F.V.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: or (M.M.G.); or (F.F.V.)
| |
Collapse
|