1
|
Yan J, Zhu Y, Luo T, Liao X, Chen X, Hua F, He H. Evaluation of a multifunctional orthodontic adhesive incorporating zinc oxide quantum dots. Am J Orthod Dentofacial Orthop 2025:S0889-5406(25)00098-8. [PMID: 40119867 DOI: 10.1016/j.ajodo.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 03/24/2025]
Abstract
INTRODUCTION The objective of this study was to further evaluate the long-term antibiofilm and fluorescence properties as well as enamel demineralization prevention ability, removal efficiency, and biocompatibility of an orthodontic adhesive modified with zinc oxide quantum dots (ZnQDs). METHODS ZnQDs were synthesized and characterized by transmission electron microscope and fluorescence observation. Minimal inhibitory concentration and minimum bactericidal concentration of ZnQDs against Streptococcus mutans were evaluated. ZnQDs (20% by weight) were incorporated into Transbond XT adhesive paste to form the multifunctional orthodontic adhesive (quantum dots adhesive 20 [QDA20]). Long-term antibiofilm capability and fluorescence properties were evaluated after saliva storage aging. A biofilm demineralization model was constructed, and the enamel demineralization degree was evaluated by color analysis, Raman analysis and microcomputed tomography. Bracket bonding and debonding procedures were performed on a head simulator, and the effectiveness of adhesive removal was assessed. Subcutaneous tissue, blood, and organ compatibility assays were performed on a rat subcutaneous tissue implant model. RESULTS ZnQDs had a diameter of approximately 5 nm, and the minimal inhibitory concentration and minimum bactericidal concentration against S mutans were 0.32 and 1.25 mg/mL. ZnQDs showed long-lasting antibiofilm and fluorescent properties and could reduce the color change and mineral loss of enamel during the biofilm demineralization process. On the head simulator, QDA20 could help the operator remove adhesive more thoroughly without damaging enamel. Histologic analysis of subcutaneous tissue and organs, and blood analysis proved that QDA20 was well-biocompatible. CONCLUSIONS ZnQDs showed excellent antibiofilm and fluorescent properties and thus could be a multifunctional adhesive to overcome the 2 major challenges of enamel demineralization and difficulty in recognizing adhesives during fixed orthodontic treatment.
Collapse
Affiliation(s)
- Jiarong Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yun Zhu
- Department of Orthodontics and Prosthodontics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaozhu Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Clinical Research Center for Oral Diseases of Zhejiang Province, Zhejiang University, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, China; Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Fang Hua
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Center for Orthodontics and Pediatric Dentistry at Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Zhang Y, Chen Y, Liu Z, Peng X, Lu J, Wang K, Zhang L. Encapsulation of a novel peptide derived from histatin-1 in liposomes against initial enamel caries in vitro and in vivo. Clin Oral Investig 2023; 28:35. [PMID: 38147166 DOI: 10.1007/s00784-023-05465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Biomimetic mineralization mediated by proteins and peptides is a promising strategy for enamel repair, and its specific application model needs more research. In this work, we exploited a liposomal delivery system for a novel peptide (DK5) derived from histatin-1 (DK5-Lips) as a new biomimetic mineralization strategy against initial enamel caries. MATERIALS AND METHODS The DK5-Lips was prepared using calcium acetate gradient method and then the in vitro release, salivary stability, and cytotoxicity were studied. Initial enamel caries was created in bovine enamel blocks and subjected to pH-cycling model treated with DK5-Lips. Surface microhardness testing, polarized light microscopy (PLM), and transverse microradiography (TMR) were analyzed. Then the biocompatibility of DK5-Lips was evaluated in the caries model of Sprague-Dawley rats, and the anti-caries effect was assessed using Micro-CT analysis, Keyes scores, and PLM in vivo. RESULTS DK5-Lips provided a mean particle size of (97.63 ± 4.94)nm and encapsulation efficiency of (61.46 ± 1.44)%, exhibiting a sustained release profile, excellent stability in saliva, and no significant toxicity on human gingival fibroblasts (HGFs). The DK5-Lips group had higher surface microhardness recovery, shallower caries depth, and less mineral loss in bovine enamel. Animal experiments showed higher volume and density values of residual molar enamel, lower Keyes score, and shallower lesion depth of the DK5-Lips group with good biocompatibility. CONCLUSION As a safe and effective application model, DK5-Lips could significantly promote the remineralization of initial enamel caries both in vitro and in vivo. CLINICAL RELEVANCE The potential of liposome utilization as vehicle for oral delivery of functional peptides may provide a new way for enamel restoration.
Collapse
Grants
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
Collapse
Affiliation(s)
- Yinmo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Yue Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
- Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Xiu Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China.
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China.
| |
Collapse
|
3
|
Rux C, Wittmer A, Stork A, Vach K, Hellwig E, Cieplik F, Al-Ahmad A. Optimizing the use of low-frequency ultrasound for bacterial detachment of in vivo biofilms in dental research-a methodological study. Clin Oral Investig 2023; 28:19. [PMID: 38141103 DOI: 10.1007/s00784-023-05397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES Low-frequency, low-intensity ultrasound is commonly utilized in various dental research fields to remove biofilms from surfaces, but no clear recommendation exists in dental studies so far. Therefore, this study aims to optimize the sonication procedure for the dental field to efficiently detach bacteria while preserving viability. MATERIALS AND METHODS Initial biofilm was formed in vivo on bovine enamel slabs (n = 6) which were worn by four healthy participants for 4 h and 24 h. The enamel slabs covered with biofilm were then ultrasonicated ex vivo for various time periods (0, 1, 2, 4, 6 min). Colony-forming units were determined for quantification, and bacteria were identified using MALDI-TOF. Scanning electron microscopic images were taken to also examine the efficiency of ultrasonications for different time periods. RESULTS Ultrasonication for 1 min resulted in the highest bacterial counts, with at least 4.5-fold number compared to the non-sonicated control (p < 0.05). Most bacteria were detached within the first 2 min of sonication, but there were still bacteria detached afterwards, although significantly fewer (p < 0.0001). The highest bacterial diversity was observed after 1 and 2 min of sonication (p < 0.03). Longer sonication periods negatively affected bacterial counts of anaerobes, Gram-negative bacteria, and bacilli. Scanning electron microscopic images demonstrated the ability of ultrasound to desorb microorganisms, as well as revealing cell damage and remaining bacteria. CONCLUSIONS With the use of low-frequency, low-intensity ultrasound, significantly higher bacterial counts and diversity can be reached. A shorter sonication time of 1 min shows the best results overall. CLINICAL RELEVANCE This standardization is recommended to study initial oral biofilms aged up to 24 h to maximize the outcome of experiments and lead to better comparability of studies.
Collapse
Affiliation(s)
- Cassandra Rux
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Annette Wittmer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Hermann-Herder- Str. 11, 79104, Freiburg, Germany
| | - Anja Stork
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Kirstin Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 26, 79104, Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
4
|
Ren J, Rao J, Wang H, He W, Feng J, Wei D, Zhao B, Wang X, Bian W. Synergistic remineralization of enamel white spot lesions using mesoporous bioactive glasses loaded with amorphous calcium phosphate. Front Bioeng Biotechnol 2023; 11:1109195. [PMID: 36777245 PMCID: PMC9912298 DOI: 10.3389/fbioe.2023.1109195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Objectives: The purpose of this study was to create a new delivery system that can synergistically remineralize enamel white spot lesions (WSLs). Materials and methods: The delivery system (PAA-ACP@aMBG) was prepared by using aminated mesoporous bioactive glasses (aMBG) as the carrier loaded with polyacrylic-stabilized amorphous calcium phosphate (PAA-ACP). The materials were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), inductively coupled plasma-optical emission spectrometry (ICP-OES), and so on. Forty-eight artificial WSLs enamel samples were randomized to four groups: artificial saliva (negative control, NC), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), PAA-ACP@aMBG, and MBG. The effects of demineralization and remineralization of the enamel surface were compared by means of surface microhardness (SMH) measurements, surface color change measurements, fluorescence microscopy (FM), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Results: There was no significant difference in the surface microhardness recovery rate (SMHRR) or color recovery rate (CRR) among the CPP-ACP group, PAA-ACP@aMBG group and MBG group (P>0.05), but these values were significantly higher than those in the NC group (p < 0.01). FM demonstrated that the remineralization depth in the PAA-ACP@aMBG group was significantly greater than that of the remaining three groups (p < 0.01). SEM analysis indicated that the enamel demineralization marks in the PAA-ACP@aMBG group, CPP-ACP group, and MBG group were obscured by mineral deposition. Conclusions: PAA-ACP@aMBG showed good mineralization properties, implying its great potential for clinical application.
Collapse
Affiliation(s)
- Juan Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jianping Rao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - He Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Wenjing He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Jinnan Feng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Danni Wei
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,*Correspondence: Wei Bian, ; Bin Zhao, ; Xing Wang,
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,*Correspondence: Wei Bian, ; Bin Zhao, ; Xing Wang,
| | - Wei Bian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China,*Correspondence: Wei Bian, ; Bin Zhao, ; Xing Wang,
| |
Collapse
|
5
|
Bertolini M, Costa RC, Barão VAR, Cunha Villar C, Retamal-Valdes B, Feres M, Silva Souza JG. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms 2022; 10:microorganisms10122413. [PMID: 36557666 PMCID: PMC9781395 DOI: 10.3390/microorganisms10122413] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
The oral cavity presents a highly diverse community of microorganisms due to the unique environmental conditions for microbial adhesion and growth [...].
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
- Correspondence:
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-010, SP, Brazil
| | | | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Center for Clinical and Translational Research, Forsyth Institute, Boston, MA 02142, USA
| | - João Gabriel Silva Souza
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas—FCO), Montes Claros 39401-303, MG, Brazil
- Oncovida Cancer Research Center, Montes Claros 39400-111, MG, Brazil
| |
Collapse
|
6
|
Flemming J, Hannig C, Hannig M. Caries Management-The Role of Surface Interactions in De- and Remineralization-Processes. J Clin Med 2022; 11:jcm11237044. [PMID: 36498618 PMCID: PMC9737279 DOI: 10.3390/jcm11237044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Bioadhesion and surface interactions on enamel are of essential relevance for initiation, progression and prevention of caries and erosions. Salivary proteins on and within initial carious and erosive lesions can facilitate or aggravate de- and remineralization. This applies for the pellicle layer, the subsurface pellicle and for proteins within initial carious lesions. Little is known about these proteinaceous structures related to initial caries and erosion. Accordingly, there is a considerable demand for an understanding of the underlying processes occurring at the interface between the tooth surface and the oral cavity in order to develop novel agents that limit and modulate caries and erosion. Objectives and findings: The present paper depicts the current knowledge of the processes occurring at the interface of the tooth surface and the oral fluids. Proteinaceous layers on dental hard tissues can prevent or aggravate demineralization processes, whereas proteins within initial erosive or carious lesions might hinder remineralization considerably and restrict the entry of ions into lesions. CONCLUSIONS Despite the fact that organic-inorganic surface interactions are of essential relevance for de- and remineralization processes at the tooth surface, there is limited knowledge on these clinically relevant phenomena. Accordingly, intensive research is necessary to develop new approaches in preventive dentistry.
Collapse
Affiliation(s)
- Jasmin Flemming
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
- Correspondence:
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|