1
|
Marik D, Sharma P, Chauhan NS, Jangir N, Shekhawat RS, Verma D, Mukherjee M, Abiala M, Roy C, Yadav P, Sadhukhan A. Peribacillus frigoritolerans T7-IITJ, a potential biofertilizer, induces plant growth-promoting genes of Arabidopsis thaliana. J Appl Microbiol 2024; 135:lxae066. [PMID: 38486365 DOI: 10.1093/jambio/lxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
AIMS This study aimed to isolate plant growth and drought tolerance-promoting bacteria from the nutrient-poor rhizosphere soil of Thar desert plants and unravel their molecular mechanisms of plant growth promotion. METHODS AND RESULTS Among our rhizobacterial isolates, Enterobacter cloacae C1P-IITJ, Kalamiella piersonii J4-IITJ, and Peribacillus frigoritolerans T7-IITJ, significantly enhanced root and shoot growth (4-5-fold) in Arabidopsis thaliana under PEG-induced drought stress. Whole genome sequencing and biochemical analyses of the non-pathogenic bacterium T7-IITJ revealed its plant growth-promoting traits, viz., solubilization of phosphate (40-73 µg/ml), iron (24 ± 0.58 mm halo on chrome azurol S media), and nitrate (1.58 ± 0.01 µg/ml nitrite), along with production of exopolysaccharides (125 ± 20 µg/ml) and auxin-like compounds (42.6 ± 0.05 µg/ml). Transcriptome analysis of A. thaliana inoculated with T7-IITJ and exposure to drought revealed the induction of 445 plant genes (log2fold-change > 1, FDR < 0.05) for photosynthesis, auxin and jasmonate signalling, nutrient uptake, redox homeostasis, and secondary metabolite biosynthesis pathways related to beneficial bacteria-plant interaction, but repression of 503 genes (log2fold-change < -1) including many stress-responsive genes. T7-IITJ enhanced proline 2.5-fold, chlorophyll 2.5-2.8-fold, iron 2-fold, phosphate 1.6-fold, and nitrogen 4-fold, and reduced reactive oxygen species 2-4.7-fold in plant tissues under drought. T7-IITJ also improved the germination and seedling growth of Tephrosia purpurea, Triticum aestivum, and Setaria italica under drought and inhibited the growth of two plant pathogenic fungi, Fusarium oxysporum, and Rhizoctonia solani. CONCLUSIONS P. frigoritolerans T7-IITJ is a potent biofertilizer that regulates plant genes to promote growth and drought tolerance.
Collapse
Affiliation(s)
- Debankona Marik
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Pinki Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelam Jangir
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | | | - Devanshu Verma
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Manasi Mukherjee
- Jodhpur City Knowledge and Innovation Foundation, IIT Jodhpur, Jodhpur 342030, India
| | - Moses Abiala
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Prayer City 110106, Nigeria
| | - Chandan Roy
- Department of Genetics and Plant Breeding, Agriculture University Jodhpur, Jodhpur 342304, India
| | - Pankaj Yadav
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| |
Collapse
|
2
|
Gladysh NS, Bogdanova AS, Kovalev MA, Krasnov GS, Volodin VV, Shuvalova AI, Ivanov NV, Popchenko MI, Samoilova AD, Polyakova AN, Dmitriev AA, Melnikova NV, Karpov DS, Bolsheva NL, Fedorova MS, Kudryavtseva AV. Culturable Bacterial Endophytes of Wild White Poplar ( Populus alba L.) Roots: A First Insight into Their Plant Growth-Stimulating and Bioaugmentation Potential. BIOLOGY 2023; 12:1519. [PMID: 38132345 PMCID: PMC10740426 DOI: 10.3390/biology12121519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The white poplar (Populus alba L.) has good potential for a green economy and phytoremediation. Bioaugmentation using endophytic bacteria can be considered as a safe strategy to increase poplar productivity and its resistance to toxic urban conditions. The aim of our work was to find the most promising strains of bacterial endophytes to enhance the growth of white poplar in unfavorable environmental conditions. To this end, for the first time, we performed whole-genome sequencing of 14 bacterial strains isolated from the tissues of the roots of white poplar in different geographical locations. We then performed a bioinformatics search to identify genes that may be useful for poplar growth and resistance to environmental pollutants and pathogens. Almost all endophytic bacteria obtained from white poplar roots are new strains of known species belonging to the genera Bacillus, Corynebacterium, Kocuria, Micrococcus, Peribacillus, Pseudomonas, and Staphylococcus. The genomes of the strains contain genes involved in the enhanced metabolism of nitrogen, phosphorus, and metals, the synthesis of valuable secondary metabolites, and the detoxification of heavy metals and organic pollutants. All the strains are able to grow on media without nitrogen sources, which indicates their ability to fix atmospheric nitrogen. It is concluded that the strains belonging to the genus Pseudomonas and bacteria of the species Kocuria rosea have the best poplar growth-stimulating and bioaugmentation potential, and the roots of white poplar are a valuable source for isolation of endophytic bacteria for possible application in ecobiotechnology.
Collapse
Affiliation(s)
- Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Vsevolod V. Volodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasia I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Nikita V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Geography, Russian Academy of Sciences, Staromonetny Pereulok, 29/4, 119017 Moscow, Russia
| | - Aleksandra D. Samoilova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Aleksandra N. Polyakova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
3
|
Vitali F, Frascella A, Semenzato G, Del Duca S, Palumbo Piccionello A, Mocali S, Fani R, Emiliani G. Employing Genome Mining to Unveil a Potential Contribution of Endophytic Bacteria to Antimicrobial Compounds in the Origanum vulgare L. Essential Oil. Antibiotics (Basel) 2023; 12:1179. [PMID: 37508275 PMCID: PMC10376600 DOI: 10.3390/antibiotics12071179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Essential oils (EOs) from medicinal plants have long been used in traditional medicine for their widely known antimicrobial properties and represent a promising reservoir of bioactive compounds against multidrug-resistant pathogens. Endophytes may contribute to the yield and composition of EOs, representing a useful tool for biotechnological applications. In this work, we investigated the genomic basis of this potential contribution. The annotated genomes of four endophytic strains isolated from Origanum vulgare L. were used to obtain KEGG ortholog codes, which were used for the annotation of different pathways in KEGG, and to evaluate whether endophytes might harbor the (complete) gene sets for terpene and/or plant hormone biosynthesis. All strains possessed ortholog genes for the mevalonate-independent pathway (MEP/DOXP), allowing for the production of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) precursors. Ortholog genes for the next steps in terpenoid biosynthesis were scarce. All the strains possess potential plant growth promotion (PGP) ability, as shown by the presence of orthologous genes involved in the biosynthesis of indoleacetic acid. The main contribution of endophytes to the yield and composition of O. vulgare EO very likely resides in their PGP activities and in the biosynthesis of precursors of bioactive compounds.
Collapse
Affiliation(s)
- Francesco Vitali
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics (CREA-AA), Via di Lanciola 12/A, 50125 Cascine del Riccio, Italy
| | - Arcangela Frascella
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Giulia Semenzato
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Sara Del Duca
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics (CREA-AA), Via di Lanciola 12/A, 50125 Cascine del Riccio, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze Ed.17, 90128 Palermo, Italy
| | - Stefano Mocali
- Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics (CREA-AA), Via di Lanciola 12/A, 50125 Cascine del Riccio, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Giovanni Emiliani
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Vassallo A, Modi A, Quagliariello A, Bacci G, Faddetta T, Gallo M, Provenzano A, La Barbera A, Lombardo G, Maggini V, Firenzuoli F, Zaccaroni M, Gallo G, Caramelli D, Aleo Nero C, Baldi F, Fani R, Palumbo Piccionello A, Pucciarelli S, Puglia AM, Sineo L. Novel Sources of Biodiversity and Biomolecules from Bacteria Isolated from a High Middle Ages Soil Sample in Palermo (Sicily, Italy). Microbiol Spectr 2023; 11:e0437422. [PMID: 37071008 PMCID: PMC10269861 DOI: 10.1128/spectrum.04374-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023] Open
Abstract
The urban plan of Palermo (Sicily, Italy) has evolved throughout Punic, Roman, Byzantine, Arab, and Norman ages until it stabilized within the borders that correspond to the current historic center. During the 2012 to 2013 excavation campaign, new remains of the Arab settlement, directly implanted above the structures of the Roman age, were found. The materials investigated in this study derived from the so-called Survey No 3, which consists of a rock cavity of subcylindrical shape covered with calcarenite blocks: it was probably used to dispose of garbage during the Arabic age and its content, derived from daily activities, included grape seeds, scales and bones of fish, small animal bones, and charcoals. Radiocarbon dating confirmed the medieval origin of this site. The composition of the bacterial community was characterized through a culture-dependent and a culture-independent approach. Culturable bacteria were isolated under aerobic and anaerobic conditions and the total bacterial community was characterized through metagenomic sequencing. Bacterial isolates were tested for the production of compounds with antibiotic activity: a Streptomyces strain, whose genome was sequenced, was of particular interest because of its inhibitory activity, which was due to the Type I polyketide aureothin. Moreover, all strains were tested for the production of secreted proteases, with those belonging to the genus Nocardioides having the most active enzymes. Finally, protocols commonly used for ancient DNA studies were applied to evaluate the antiquity of isolated bacterial strains. Altogether these results show how paleomicrobiology might represent an innovative and unexplored source of novel biodiversity and new biotechnological tools. IMPORTANCE One of the goals of paleomicrobiology is the characterization of the microbial community present in archaeological sites. These analyses can usually provide valuable information about past events, such as occurrence of human and animal infectious diseases, ancient human activities, and environmental changes. However, in this work, investigations about the composition of the bacterial community of an ancient soil sample (harvested in Palermo, Italy) were carried out aiming to screen ancient culturable strains with biotechnological potential, such as the ability to produce bioactive molecules and secreted hydrolytic enzymes. Besides showing the biotechnological relevance of paleomicrobiology, this work reports a case of germination of putatively ancient bacterial spores recovered from soil rather than extreme environments. Moreover, in the case of spore-forming species, these results raise questions about the accuracy of techniques usually applied to estimate antiquity of DNA, as they could lead to its underestimation.
Collapse
Affiliation(s)
- Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - Michele Gallo
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre (VE), Italy
| | - Aldesia Provenzano
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio,” University of Florence, Florence (FI), Italy
| | - Andrea La Barbera
- Unit of Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa (GE), Italy
| | - Giovanna Lombardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - Valentina Maggini
- Research and Innovation Center in Phytotherapy and Integrated Medicine, Tuscany Region, Careggi University Hospital, Florence (FI), Italy
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine, Tuscany Region, Careggi University Hospital, Florence (FI), Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Carla Aleo Nero
- Soprintendenza ai Beni culturali e ambientali di Palermo, Palermo (PA), Italy
| | - Franco Baldi
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre (VE), Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Anna Maria Puglia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - Luca Sineo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| |
Collapse
|
5
|
Simpson AC, Eedara VVR, Singh NK, Damle N, Parker CW, Karouia F, Mason CE, Venkateswaran K. Comparative genomic analysis of Cohnella hashimotonis sp. nov. isolated from the International Space Station. Front Microbiol 2023; 14:1166013. [PMID: 37396358 PMCID: PMC10308117 DOI: 10.3389/fmicb.2023.1166013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
A single strain from the family Paenibacillaceae was isolated from the wall behind the Waste Hygiene Compartment aboard the International Space Station (ISS) in April 2018, as part of the Microbial Tracking mission series. This strain was identified as a gram-positive, rod-shaped, oxidase-positive, catalase-negative motile bacterium in the genus Cohnella, designated as F6_2S_P_1T. The 16S sequence of the F6_2S_P_1T strain places it in a clade with C. rhizosphaerae and C. ginsengisoli, which were originally isolated from plant tissue or rhizosphere environments. The closest 16S and gyrB matches to strain F6_2S_P_1T are to C. rhizosphaerae with 98.84 and 93.99% sequence similarity, while a core single-copy gene phylogeny from all publicly available Cohnella genomes places it as more closely related to C. ginsengisoli. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values to any described Cohnella species are <89 and <22%, respectively. The major fatty acids for strain F6_2S_P_1T are anteiso-C15:0 (51.7%), iso-C16:0 (23.1%), and iso-C15:0 (10.5%), and it is able to metabolize a wide range of carbon compounds. Given the results of the ANI and dDDH analyses, this ISS strain is a novel species within the genus Cohnella for which we propose the name Cohnella hashimotonis, with the type strain F6_2S_P_1T (=NRRL B-65657T and DSMZ 115098T). Because no closely related Cohnella genomes were available, this study generated the whole-genome sequences (WGSs) of the type strains for C. rhizosphaerae and C. ginsengisoli. Phylogenetic and pangenomic analysis reveals that F6_2S_P_1T, C. rhizosphaerae, and C. ginsengisoli, along with two uncharacterized Cohnella strains, possess a shared set of 332 gene clusters which are not shared with any other WGS of Cohnella species, and form a distinct clade branching off from C. nanjingensis. Functional traits were predicted for the genomes of strain F6_2S_P_1T and other members of this clade.
Collapse
Affiliation(s)
- Anna C. Simpson
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| | - V. V. Ramprasad Eedara
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nitin K. Singh
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Namita Damle
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Ceth W. Parker
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| | | | - Christopher E. Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| |
Collapse
|
6
|
Vassallo A, Amoriello R, Guri P, Casbarra L, Ramazzotti M, Zaccaroni M, Ballerini C, Cavalieri D, Marvasi M. Adaptation of Commensal Escherichia coli in Tomato Fruits: Motility, Stress, Virulence. BIOLOGY 2023; 12:biology12040633. [PMID: 37106833 PMCID: PMC10136321 DOI: 10.3390/biology12040633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Food contamination can be a serious concern for public health because it can be related to the severe spreading of pathogens. This is a main issue, especially in the case of fresh fruits and vegetables; indeed, they have often been associated with gastrointestinal outbreak events, due to contamination with pathogenic bacteria. However, little is known about the physiological adaptation and bacterial response to stresses encountered in the host plant. Thus, this work aimed to investigate the adaptation of a commensal E. coli strain while growing in tomato pericarp. Pre-adapted and non-adapted cells were compared and used to contaminate tomatoes, demonstrating that pre-adaptation boosted cell proliferation. DNA extracted from pre-adapted and non-adapted cells was sequenced, and their methylation profiles were compared. Hence, genes involved in cell adhesion and resistance against toxic compounds were identified as genes involved in adaptation, and their expression was compared in these two experimental conditions. Finally, pre-adapted and non-adapted E. coli were tested for their ability to resist the presence of toxic compounds, demonstrating that adaptation exerted a protective effect. In conclusion, this work provides new information about the physiological adaptation of bacteria colonizing the tomato fruit pericarp.
Collapse
Affiliation(s)
- Alberto Vassallo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Roberta Amoriello
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| | - Prandvera Guri
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Casbarra
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Clara Ballerini
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
7
|
Kumar A, Santoyo G, White JF, Mishra VK. Special Issue “Microbial Endophytes: Functional Biology and Applications”: Editorial. Microorganisms 2023; 11:microorganisms11040918. [PMID: 37110341 PMCID: PMC10145780 DOI: 10.3390/microorganisms11040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/12/2023] [Indexed: 04/05/2023] Open
Abstract
Plants harbour various microbial communities, including bacteria, fungi, actinomycetes, and nematodes, inside or outside their tissues [...]
Collapse
Affiliation(s)
- Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Virendra Kumar Mishra
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
8
|
Genomic, Molecular, and Phenotypic Characterization of Arthrobacter sp. OVS8, an Endophytic Bacterium Isolated from and Contributing to the Bioactive Compound Content of the Essential Oil of the Medicinal Plant Origanum vulgare L. Int J Mol Sci 2023; 24:ijms24054845. [PMID: 36902273 PMCID: PMC10002853 DOI: 10.3390/ijms24054845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Medicinal plants play an important role in the discovery of new bioactive compounds with antimicrobial activity, thanks to their pharmacological properties. However, members of their microbiota can also synthesize bioactive molecules. Among these, strains belonging to the genera Arthrobacter are commonly found associated with the plant's microenvironments, showing plant growth-promoting (PGP) activity and bioremediation properties. However, their role as antimicrobial secondary metabolite producers has not been fully explored. The aim of this work was to characterize the Arthrobacter sp. OVS8 endophytic strain, isolated from the medicinal plant Origanum vulgare L., from molecular and phenotypic viewpoints to evaluate its adaptation and influence on the plant internal microenvironments and its potential as a producer of antibacterial volatile molecules (VOCs). Results obtained from the phenotypic and genomic characterization highlight its ability to produce volatile antimicrobials effective against multidrug-resistant (MDR) human pathogens and its putative PGP role as a producer of siderophores and degrader of organic and inorganic pollutants. The outcomes presented in this work identify Arthrobacter sp. OVS8 as an excellent starting point toward the exploitation of bacterial endophytes as antibiotics sources.
Collapse
|
9
|
Romeo L, Esposito A, Bernacchi A, Colazzo D, Vassallo A, Zaccaroni M, Fani R, Del Duca S. Application of Cloning-Free Genome Engineering to Escherichia coli. Microorganisms 2023; 11:microorganisms11010215. [PMID: 36677507 PMCID: PMC9866961 DOI: 10.3390/microorganisms11010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The propagation of foreign DNA in Escherichia coli is central to molecular biology. Recent advances have dramatically expanded the ability to engineer (bacterial) cells; however, most of these techniques remain time-consuming. The aim of the present work was to explore the possibility to use the cloning-free genome editing (CFGE) approach, proposed by Döhlemann and coworkers (2016), for E. coli genetics, and to deepen the knowledge about the homologous recombination mechanism. The E. coli auxotrophic mutant strains FB182 (hisF892) and FB181 (hisI903) were transformed with the circularized wild-type E. coli (i) hisF gene and hisF gene fragments of decreasing length, and (ii) hisIE gene, respectively. His+ clones were selected based on their ability to grow in the absence of histidine, and their hisF/hisIE gene sequences were characterized. CFGE method allowed the recombination of wild-type his genes (or fragments of them) within the mutated chromosomal copy, with a different recombination frequency based on the fragment length, and the generation of clones with a variable number of in tandem his genes copies. Data obtained pave the way to further evolutionary studies concerning the homologous recombination mechanism and the fate of in tandem duplicated genes.
Collapse
Affiliation(s)
- Lucia Romeo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonia Esposito
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alberto Bernacchi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Daniele Colazzo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Renato Fani
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (R.F.); (S.D.D.)
| | - Sara Del Duca
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (R.F.); (S.D.D.)
| |
Collapse
|
10
|
Shirazi K, Ketabchi S, Kargar M. Screening of endophytic bacteria from potato tubers and their antagonistic activity against soil-borne potato pathogens. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2023.10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to appraise the bacterial endophyte communities that help resist disease in potato tuber, the separation, the population density, biodiversity and the antagonistic activity of endophytic bacteria, from the tuber peel of potato cultivars (Fontan90, Agria, Sante’a and Jeli89), were examined in the Fars province in Iran. In this study, the bacterial endophyte Colony Forming Units (CFU) were counted based on the most suitable dilution in petri dishes and expressed per g of wet weight of tuber tissue. The presence of bacteria was found mostly in the outer layer. A wide variety of endophyte species biodiversity was in Agria cultivar. To estimate the antagonistic effect of potato associated endophytic bacteria, 115 bacterial isolates were evaluated by dual culture method against main soil-borne potato pathogens Fusarium oxysporum, Rhizoctonia solani, Verticillium dahliae, Streptomyces scabies and Ralstonia solanacearum. Endophyte strains were identified based on physiological, morphological and chemical characteristics and the 16S rRNA gene sequence analysis. The highest degree of the inhibitory activity in all layers of potato cultivars was related to Bacillus subtilis, Bacillus mojavensis and Klebsiella variicola. Antagonistic activity of endophytic bacteria against the pathogens was significantly higher (p<0.01) in the examined strains from the outermost layer of tuber peel and decreased progressively toward the center of the tuber. In this research, Klebsiella variicola was reported as endophyte bacteria in the four commercial potatocultivars mentioned above, for the first time.
Collapse
|
11
|
Semenzato G, Faddetta T, Falsini S, Del Duca S, Esposito A, Padula A, Greco C, Mucci N, Zaccaroni M, Puglia AM, Papini A, Fani R. Endophytic Bacteria Associated with Origanum heracleoticum L. (Lamiaceae) Seeds. Microorganisms 2022; 10:microorganisms10102086. [PMID: 36296360 PMCID: PMC9612275 DOI: 10.3390/microorganisms10102086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Seed-associated microbiota are believed to play a crucial role in seed germination, seedling establishment, and plant growth and fitness stimulation, due to the vertical transmission of a core microbiota from seeds to the next generations. It might be hypothesized that medicinal and aromatic plants could use the seeds as vectors to vertically transfer beneficial endophytes, providing plants with metabolic pathways that could influence phytochemicals production. Here, we investigated the localization, the structure and the composition of the bacterial endophytic population that resides in Origanum heracleoticum L. seeds. Endocellular bacteria, surrounded by a wall, were localized close to the aleurone layer when using light and transmission electron microscopy. From surface-sterilized seeds, cultivable endophytes were isolated and characterized through RAPD analysis and 16S RNA gene sequencing, which revealed the existence of a high degree of biodiversity at the strain level and the predominance of the genus Pseudomonas. Most of the isolates grew in the presence of six selected antibiotics and were able to inhibit the growth of clinical and environmental strains that belong to the Burkholderia cepacia complex. The endophytes production of antimicrobial compounds could suggest their involvement in plant secondary metabolites production and might pave the way to endophytes exploitation in the pharmaceutical field.
Collapse
Affiliation(s)
- Giulia Semenzato
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies-STEBICEF, University of Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Sara Falsini
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Sara Del Duca
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Antonia Esposito
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Anna Padula
- Unit for Conservation Genetics (BIO-CGE), Institute for Environmental Protection and Research, Via Ca’ Fornacetta, 9, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Claudia Greco
- Unit for Conservation Genetics (BIO-CGE), Institute for Environmental Protection and Research, Via Ca’ Fornacetta, 9, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO-CGE), Institute for Environmental Protection and Research, Via Ca’ Fornacetta, 9, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Anna Maria Puglia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies-STEBICEF, University of Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
- Correspondence:
| |
Collapse
|