1
|
Ed-Dra A, Nalbone L, Shahat AA, Laaraj S, Farihi A, Moujane S, Noman OM, Elfazazi K, Giuffrida A, Giarratana F. Antilisterial activity of Thymus vulgaris essential oil: In vitro, in situ, and in silico investigations. Microb Pathog 2025; 204:107557. [PMID: 40203959 DOI: 10.1016/j.micpath.2025.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Listeria monocytogenes is a major foodborne pathogen that significantly threatens public health and food safety. While Thymus vulgaris essential oil (TV-EO) is widely recognized for its potent antibacterial activity, its specific effects against L. monocytogenes remain unexplored. This study aimed to assess the antilisterial activity of TV-EO using in vitro, in situ, and in silico approaches. The in vitro assessment included disc diffusion method, determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), biofilm inhibition assay, and predictive modeling to assess L. monocytogenes reduction in the presence of TV-EO at 10 °C and 20 °C. In situ approach evaluated the inhibitory effect of TV-EO on L. monocytogenes in minced poultry meat stored at 4 °C. Finally, in silico approach, based on molecular docking, was employed to evaluate the binding affinity of major TV-EO components for β-ketoacyl-ACP synthase II and chorismate synthase, key proteins involved in fatty acid biosynthesis and biofilm formation, respectively. Our finding revealed that TV-EO exhibited strong in vitro antilisterial activity, with inhibitory zones ranging from 51.00 ± 1.00 mm to 55.67 ± 1.15 mm, a MIC value of 0.125 %, and a MBC value of 0.25 %, indicating its bactericidal effect. TV-EO at 0.125 % demonstrated a high capacity to inhibit and eradicate the biofilm, with 100 ± 0.00 % and 91.33 ± 1.23 %, respectively. Predictive modeling, based on the combination of TV-EO and ζ values, revealed that L. monocytogenes inactivation was more pronounced at low temperature. Furthermore, the in-situ approach showed a significant reduction of L. monocytogenes amount, with decreases of 1.068 ± 0.132 log cfu/g, 0.671 ± 0.091 log cfu/g, and 0.317 ± 0.029 log cfu/g at TV-EO concentrations of 1 %, 0.5 %, and 0.25 %, respectively (p < 0.05). In silico analysis indicated that TV-EO components, particularly carvacrol, exhibited high affinity for β-ketoacyl-ACP synthase II and chorismate cynthase, suggesting strong antilisterial and ani-biofilm activity. These findings highlight the antilisterial efficacy of TV-EO, demonstrating its potential as a natural alternative to conventional preservatives for enhancing food preservation and safety.
Collapse
Affiliation(s)
- Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco.
| | - Luca Nalbone
- Department of Veterinary Science, University of Messina, Polo Universitario della Annunziata, 98168, Messina, Italy.
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Salah Laaraj
- Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat, 10090, Morocco; Environmental, Ecological, and Agro-Industrial Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Ayoub Farihi
- Oriental Center for Water and Environmental Sciences and Technologies (COSTE), Mohammed Premier University, Oujda, 60000, Morocco
| | - Soumia Moujane
- Faculty of Medicine and Pharmacy of Guelmim, Ibn Zohr University, Guelmim, Morocco
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kaoutar Elfazazi
- Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat, 10090, Morocco
| | - Alessandro Giuffrida
- Department of Veterinary Science, University of Messina, Polo Universitario della Annunziata, 98168, Messina, Italy
| | - Filippo Giarratana
- Department of Veterinary Science, University of Messina, Polo Universitario della Annunziata, 98168, Messina, Italy
| |
Collapse
|
2
|
Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, Martínez-Chávez L, Martínez-Gonzáles NE, Gutiérrez-Lomelí M. Listeria monocytogenes in Fruits and Vegetables: Antimicrobial Resistance, Biofilm, and Genomic Insights. Antibiotics (Basel) 2024; 13:1039. [PMID: 39596734 PMCID: PMC11591142 DOI: 10.3390/antibiotics13111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Listeria monocytogenes is a foodborne pathogen that can infect both humans and animals and cause noninvasive gastrointestinal listeriosis or invasive listeriosis. The objectives of this study were to determine the genetic diversity of L. monocytogenes; the genes associated with its resistance to antibiotics, benzalkonium chloride (BC), and cadmium chloride (CdCl2); and its biofilm formation. METHODS A total of 132 fresh fruits (44 samples) and vegetables (88 samples) were selected for this study. The genetic diversity of the isolates and the genes associated with their antibiotic resistance were determined using PCR amplification; meanwhile, their levels of susceptibility to antibiotics were determined using the agar diffusion method. Their levels of resistance to BC and CdCl2 were determined using the minimum inhibitory concentration method, and their capacity for biofilm formation was evaluated using the crystal violet staining method. RESULTS A total of 17 L. monocytogenes strains were collected: 12.8% (17/132) from fresh fruits and vegetables in this study. The isolates of L. monocytogenes belonged to phylogenetic groups I.1 (29.4% (5/17); serotype 1/2a) and II.2 (70.5% (12/17); serotype 1/2b); strains containing Listeria pathogenicity islands (LIPIs) were also identified at prevalence rates of 100% for LIPI-1 and LIPI-2 (17/17), 29.4% for LIPI-3 (5/17), and 11.7% for LIPI-4 (2/17). The antibiotic susceptibility tests showed that the L. monocytogenes isolates exhibited six different multiresistant patterns, with multiple antibiotic resistance (MAR) index of ≥0.46 (70.5%; 12/17); additionally, the genes Ide, tetM, and msrA, associated with efflux pump Lde, tetracycline, and ciprofloxacin resistance, were detected at 52.9% (9/17), 29.4% (5/17), and 17.6% (3/17), respectively. The phenotypic tests showed that 58.8% (10/17) of cadmium-resistant L. monocytogenes isolates had a co-resistance of 23.5% (4/17) to BC. Finally, all strains of L. monocytogenes exhibited moderate biofilm production. CONCLUSIONS The results of this study contribute to our understanding of the persistence and genetic diversity of L. monocytogenes strains isolated from fresh fruits and vegetables; in addition, their resistance to CdCl2, which is correlated with co-resistance to BC disinfectant, is helpful for the food industry.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Oscar Alberto Solis-Velazquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Liliana Martínez-Chávez
- Departamentos de Farmacobiología y Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Nanci Edid Martínez-Gonzáles
- Departamentos de Farmacobiología y Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| |
Collapse
|
3
|
Van Blair J, Lacombe A, Harvey BL, Wu VCH. Chlorine dioxide is a broad-spectrum disinfectant against Shiga toxin-producing Escherichia coli and Listeria monocytogenes in agricultural water. Front Microbiol 2024; 15:1469615. [PMID: 39526135 PMCID: PMC11543455 DOI: 10.3389/fmicb.2024.1469615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Agricultural water is commonly treated with chlorine-based disinfectants, which are impacted by water quality. Understanding how water quality influences disinfectants such as chlorine dioxide (ClO2) against pathogenic bacteria is important for creating efficacious sanitation regimens. In this study, the minimum inhibitory concentration (MIC) of ClO2 needed to achieve a 3-Log reduction against Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes was compared across agricultural water samples. Sterile ddH2O served as a control to compare with environmental samples from Salinas Valley, CA, and laboratory standards. To test different dosages and water qualities, stock ClO2 was diluted in 24-well plates with target concentrations of 10, 5, 2.5, and 1.25 mg/L. Well plates were inoculated with pathogens and treated with sanitizer for 5 min. Following treatment, surviving pathogens were enumerated using viable cell counts. The results demonstrate that groundwater samples had the highest water quality of the environmental samples and required the lowest concentration of disinfectant to achieve 3-Log reduction against both bacteria, with MIC between 1.4 and 2.0 mg/L. Open-source samples had lower water quality and required a higher concentration of ClO2 for 3-Log reduction, with MIC between 2.8 and 5.8 mg/L for both pathogens. There was no correlation between pH, turbidity, or conductivity/TDS and reduction for either STEC or L. monocytogenes, suggesting no individual water metric was driving reduction. A lower dosage was required to achieve 3-Log reduction against STEC, while L. monocytogenes required greater concentrations to achieve the same level of reduction. Overall, these results help guide growers in using ClO2 as a broad-spectrum disinfectant and demonstrate its efficacy in reaching 3-Log reduction across agricultural water samples.
Collapse
Affiliation(s)
| | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| |
Collapse
|
4
|
Končurat A, Sukalić T. Listeriosis: Characteristics, Occurrence in Domestic Animals, Public Health Significance, Surveillance and Control. Microorganisms 2024; 12:2055. [PMID: 39458364 PMCID: PMC11510258 DOI: 10.3390/microorganisms12102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Listeriosis is a dangerous zoonosis caused by bacteria of the genus Listeria, with Listeria monocytogenes (LM) being the most pathogenic species. Listeria monocytogenes has been detected in various animal species and in humans, and its ability to evolve from an environmental saprophyte to a powerful intracellular pathogen is driven by the invasion mechanisms and virulence factors that enable cell invasion, replication and cell-to-cell spread. Key regulatory systems, including positive regulatory factor A (PrfA) and the stress-responsive sigma factor σB, control the expression of virulence genes and facilitate invasion of host cells. Listeriosis poses a significant threat to cattle, sheep and goat herds, leading to abortions, septicemia and meningoencephalitis, and ruminants are important reservoirs for Listeria, facilitating transmission to humans. Other Listeria species such as Listeria ivanovii and Listeria innocua can also cause disease in ruminants. Resilience of LM in food processing environments makes it an important foodborne pathogen that is frequently transmitted through contaminated meat and dairy products, with contamination often occurring along the food production chain. In humans, listeriosis primarily affects immunocompromised individuals, pregnant women and the elderly and leads to severe conditions, such as meningitis, septicemia and spontaneous abortion. Possible treatment requires antibiotics that penetrate the blood-brain barrier. Despite the relatively low antimicrobial resistance, multidrug-resistant LM strains have been detected in animals, food and the environment. Controlling and monitoring the disease at the herd level, along with adopting a One Health approach, are crucial to protect human and animal health and to minimize the potential negative impacts on the environment.
Collapse
Affiliation(s)
| | - Tomislav Sukalić
- Animal Disease Diagnostics Laboratory, Regional Department Križevci, Croatian Veterinary Institute, 48260 Križevci, Croatia;
| |
Collapse
|
5
|
Kanarek P, Breza-Boruta B, Bogiel T. In the Depths of Wash Water: Isolation of Opportunistic Bacteria from Fresh-Cut Processing Plants. Pathogens 2024; 13:768. [PMID: 39338959 PMCID: PMC11435197 DOI: 10.3390/pathogens13090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The fruit and vegetable industry in post-harvest processing plants is characterized by a substantial consumption of water resources. Wash waters may serve as an environment for the periodic or permanent habitation of microorganisms, particularly if biofilm forms on the inner walls of tanks and flushing channels. Despite the implementation of integrated food safety monitoring systems in numerous countries, foodborne pathogens remain a global public health and food safety concern, particularly for minimally processed food products such as vegetables and fruits. This necessitates the importance of studies that will explore wash water quality to safeguard minimally processed food against foodborne pathogen contamination. Therefore, the current study aimed to isolate and identify bacteria contaminating the wash waters of four fresh-cut processing plants (Poland) and to evaluate the phenotypic antibiotic resistance profiles in selected species. Bacteria were isolated using membrane filtration and identified through mass spectrometry, followed by antibiotic susceptibility testing according to EUCAST guidelines. The results revealed that the level of contamination with total aerobic bacteria in the water ranged from 1.30 × 106 cfu/mL to 2.54 × 108 cfu/mL. Among the isolates, opportunistic pathogens including Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella oxytoca, Klebsiella pneumoniae, Serratia marcescens, and Proteus vulgaris strains were identified. An especially noteworthy result was the identification of cefepime-resistant K. oxytoca isolates. These findings highlight the importance of monitoring the microbial microflora in minimally processed foods and the need for appropriate sanitary control procedures to minimize the risk of pathogen contamination, ensuring that products remain safe and of high quality throughout the supply chain.
Collapse
Affiliation(s)
- Piotr Kanarek
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029 Bydgoszcz, Poland;
| | - Barbara Breza-Boruta
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029 Bydgoszcz, Poland;
| | - Tomasz Bogiel
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
6
|
Sharif F, Shahzad L, Batool M. The association between climatic factors and waterborne infectious outbreaks with a focus on vulnerability in Pakistan: integrative review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3299-3316. [PMID: 38195067 DOI: 10.1080/09603123.2024.2302040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
Climate change affects the spread of waterborne infectious diseases, yet research on vulnerability to outbreaks remains limited. This integrative review examines how climate variables (temperature and precipitation) relate to human vulnerability factors in Pakistan. By 2060, mean temperatures are projected to rise from 21.68°C (2021) to 30°C, with relatively stable precipitation. The epidemiological investigation in Pakistan identified Diarrhea (119,000 cases/year), Malaria (2.6 million cases/year), and Hepatitis (A and E) as the most prevalent infections. This research highlighted vulnerability factors, including poverty (52% of the population), illiteracy (59% of the population), limited healthcare accessibility (55% of the population), malnutrition (38% of the population), dietary challenges (48% of the population), as well as exposure to water pollution (80% of the population) and air pollution (55% of the population). The findings suggest that the coordinated strategies are vital across health, environmental, meteorological, and social sectors, considering climatic variability patterns and population vulnerability determinants.
Collapse
Affiliation(s)
- Faiza Sharif
- Sustainable development study center (SDSC), Government College University, Lahore, Pakistan
| | - Laila Shahzad
- Sustainable development study center (SDSC), Government College University, Lahore, Pakistan
| | - Masooma Batool
- Sustainable development study center (SDSC), Government College University, Lahore, Pakistan
| |
Collapse
|
7
|
Kapetanović D, Katouli M, Lušić DV. Microbial Communities in Changing Aquatic Environments. Microorganisms 2024; 12:726. [PMID: 38674670 PMCID: PMC11051731 DOI: 10.3390/microorganisms12040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The quality of aquatic ecosystems is an important public health concern [...].
Collapse
Affiliation(s)
| | - Mohammad Katouli
- Centre for Genecology, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
| | | |
Collapse
|
8
|
Bolten S, Belias A, Weigand KA, Pajor M, Qian C, Ivanek R, Wiedmann M. Population dynamics of Listeria spp., Salmonella spp., and Escherichia coli on fresh produce: A scoping review. Compr Rev Food Sci Food Saf 2023; 22:4537-4572. [PMID: 37942966 DOI: 10.1111/1541-4337.13233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 11/10/2023]
Abstract
Collation of the current scope of literature related to population dynamics (i.e., growth, die-off, survival) of foodborne pathogens on fresh produce can aid in informing future research directions and help stakeholders identify relevant research literature. A scoping review was conducted to gather and synthesize literature that investigates population dynamics of pathogenic and non-pathogenic Listeria spp., Salmonella spp., and Escherichia coli on whole unprocessed fresh produce (defined as produce not having undergone chopping, cutting, homogenization, irradiation, or pasteurization). Literature sources were identified using an exhaustive search of research and industry reports published prior to September 23, 2021, followed by screening for relevance based on strict, a priori eligibility criteria. A total of 277 studies that met all eligibility criteria were subjected to an in-depth qualitative review of various factors (e.g., produce commodities, study settings, inoculation methodologies) that affect population dynamics. Included studies represent investigations of population dynamics on produce before (i.e., pre-harvest; n = 143) and after (i.e., post-harvest; n = 144) harvest. Several knowledge gaps were identified, including the limited representation of (i) pre-harvest studies that investigated population dynamics of Listeria spp. on produce (n = 13, 9% of pre-harvest studies), (ii) pre-harvest studies that were carried out on non-sprouts produce types grown using hydroponic cultivation practices (n = 7, 5% of pre-harvest studies), and (iii) post-harvest studies that reported the relative humidity conditions under which experiments were carried out (n = 56, 39% of post-harvest studies). These and other knowledge gaps summarized in this scoping review represent areas of research that can be investigated in future studies.
Collapse
Affiliation(s)
- Samantha Bolten
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Kelly A Weigand
- Cary Veterinary Medical Library, Auburn University, Auburn, Alabama, USA
- Flower-Sprecher Veterinary Library, Cornell University, Ithaca, New York, USA
| | - Magdalena Pajor
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Chenhao Qian
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Li M, Chen L, Zhao F, Tang J, Bu Q, Feng Q, Yang L. An innovative risk evaluation method on soil pathogens in urban-rural ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132286. [PMID: 37595464 DOI: 10.1016/j.jhazmat.2023.132286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
The presence and reproduction of pathogens in soil environment have significant negative impacts on soil security and human health in urban-rural ecosystem. Rapid urbanization has dramatically changed the land use, soil ecosystems, and the presence of pathogens in soil environment, however, the risk associated with soil pathogens remains unknown. Identifying the potential risk of pathogens in soils in urban-rural ecosystem has become an urgent issue. In this study, we established a risk evaluation method for soil pathogens based on analytic hierarchy process and entropy methods to quantitatively estimate the potential risk of soil pathogens to children and adults in urban-rural ecosystem. The abundance and species number of soil pathogens, network structure of soil microbial community, and human exposure factors were considered with 12 indicators to establish the risk evaluation system. The results revealed that 19 potential pathogenic bacteria were detected in soils within a typical urban-rural ecosystem. Substantial differences were observed in both abundance and species of soil pathogens as well as network structure of soil microbial community from urban to rural areas. Urban areas exhibited relatively lower levels of soil pathogenic abundance, but the microbial network was considerably unstable. Rural areas supported relatively higher levels of soil pathogenic abundance and stable microbial networks. Notably, peri-urban areas showed relatively unstable microbial networks alongside higher levels of soil pathogenic abundance compared to other areas. The risk evaluation of soil pathogens for both adults and children showed that peri-urban areas presented the highest potential risk, with children being more susceptible than adults to threats posed by soil pathogens in both urban and peri-urban areas. The established evaluation system provides an innovative approach for quantifying risk of soil pathogens at regional scale and can be used as a reference for preventing soil pathogens contamination and enhancing soil health in areas with intense human activities.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Chen M, Zhang J, Xia J, Sun J, Zhang X, Xu J, Deng S, Han Y, Jiang L, Song H, Cheng C. Listeria monocytogenes GshF contributes to oxidative stress tolerance via regulation of the phosphoenolpyruvate-carbohydrate phosphotransferase system. Microbiol Spectr 2023; 11:e0236523. [PMID: 37668404 PMCID: PMC10580955 DOI: 10.1128/spectrum.02365-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023] Open
Abstract
Glutathione (GSH) is an essential component of the glutaredoxin (Grx) system, and it is synthesized by the enzyme glutathione synthase GshF in Listeria monocytogenes. GSH plays a crucial role in regulating Listeria virulence by modifying the virulence factors LLO and PrfA. In this study, we investigated the involvement of L. monocytogenes GshF in oxidative tolerance and intracellular infection. Our findings revealed that the deletion of gshF resulted in a significant reduction in bacterial growth in vitro when exposed to diamide and copper ions stress. More importantly, this deletion also impaired the efficiency of invasion and proliferation in macrophages and mice organs. Furthermore, GshF influenced global transcriptional profiles, including carbohydrate and amino acid metabolism, particularly those related to the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) genes lmo1997-lmo2004, under oxidative stress conditions. In the wild-type strain, the transcription of lmo1997-lmo2004 was notably downregulated in response to copper ions and diamide stress compared to normal conditions. However, in the absence of gshF, the transcripts of lmo1997-lmo2004 were upregulated in response to these stress conditions. Notably, the deletion of iiBman (lmo2002) enhanced oxidative stress tolerance to copper ions, whereas overexpression of iiBman reduced this resistance. In conclusion, our study provides the first evidence that L. monocytogenes GshF plays a crucial role in bacterial antioxidation through the regulation of iiBman.IMPORTANCEListeria monocytogenes has developed various mechanisms to withstand oxidative stress, including the thioredoxin and glutaredoxin systems. However, the specific role of the glutathione synthase GshF, responsible for synthesizing GSH in L. monocytogenes, in oxidative tolerance remains unclear. This study aimed to elucidate the relationship between GshF and oxidative tolerance in L. monocytogenes by examining the efficiency of invasion and proliferation in macrophages and mice organs, as well as analyzing global transcriptional profiles under oxidative stress conditions. The results revealed that GshF plays a significant role in L. monocytogenes' response to oxidative stress. Notably, GshF acts to suppress the transcription of phosphoenolpyruvate-carbohydrate phosphotransferase system genes lmo1997-lmo2004, among which iiBman (lmo2002) was identified as the most critical gene for resisting oxidative stress. These findings enhance our understanding of how L. monocytogenes adapts to its environment and provide valuable insights for investigating the environmental adaptation mechanisms of other pathogenic bacteria.
Collapse
Affiliation(s)
- Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiaxue Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Simin Deng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yue Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
11
|
Goedseels M, Michiels CW. Cell Envelope Modifications Generating Resistance to Hop Beta Acids and Collateral Sensitivity to Cationic Antimicrobials in Listeria monocytogenes. Microorganisms 2023; 11:2024. [PMID: 37630584 PMCID: PMC10457916 DOI: 10.3390/microorganisms11082024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Hop beta acids (HBAs) are characteristic compounds from the hop plant that are of interest for their strong antimicrobial activity. In this work, we report a resistance mechanism against HBA in the foodborne pathogen Listeria monocytogenes. Using an evolution experiment, we isolated two HBA-resistant mutants with mutations in the mprF gene, which codes for the Multiple Peptide Resistance Factor, an enzyme that confers resistance to cationic peptides and antibiotics in several Gram-positive bacteria by lysinylating membrane phospholipids. Besides the deletion of mprF, the deletion of dltA, which mediates the alanylation of teichoic acids, resulted in increased HBA resistance, suggesting that resistance may be caused by a reduction in positive charges on the cell surface. Additionally, we found that this resistance is maintained at low pH, indicating that the resistance mechanism is not solely based on electrostatic interactions of HBA with the cell surface. Finally, we showed that the HBA-resistant mutants display collateral sensitivity to the cationic antimicrobials polymyxin B and nisin, which may open perspectives for combining antimicrobials to prevent resistance development.
Collapse
Affiliation(s)
| | - Chris W. Michiels
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium;
| |
Collapse
|
12
|
Inactivation of foodborne pathogenic bacteria in water and stainless steel surfaces by vacuum-UV amalgam lamp and low-pressure mercury UV lamp irradiation. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Elsayed ME, Abd El-Hamid MI, El-Gedawy A, Bendary MM, ELTarabili RM, Alhomrani M, Alamri AS, Alghamdi SA, Arnout M, Binjawhar DN, Al-Sanea MM, Abousaty AI. New Insights into Listeria monocytogenes Antimicrobial Resistance, Virulence Attributes and Their Prospective Correlation. Antibiotics (Basel) 2022; 11:antibiotics11101447. [PMID: 36290105 PMCID: PMC9598308 DOI: 10.3390/antibiotics11101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/04/2022] Open
Abstract
Listeriosis is one of the most common foodborne diseases caused by Listeria monocytogenes (L. monocytogenes). A poor prognosis has been recorded for the invasive listeriosis, especially neurolisteriosis. In several countries throughout the world, foodborne infections with L. monocytogenes exceeded the legal safety limits in animal sourced foods. Therefore, we decided to investigate the variability, virulence and antimicrobial resistance profiles of this pathogen. Both phenotypic and genotypic methods were used for identifying L. monocytogenes isolates and confirming their virulence profiles. The antimicrobial resistances and their correlation analysis with the existence of virulence genes were detected. Additionally, sequencing and phylogenetic analysis based on L. monocytogenes inlA and inlB genes were undertaken. The prevalence rate (11.9%) and the resistance profiles of L. monocytogenes were shocking. The multi-drug resistance (MDR) phenotypes were common among our isolates (64.9%). Fortunately, the resistance phenotypes were always associated with low virulence arrays and the MDR strains possessed low virulence fitness. Herein, the high genotypic and phenotypic diversity of L. monocytogenes isolates and their weak clonality and adaptability highlighted the difficulty in controlling and managing this pathogen. Therefore, it is important to add more restriction guidelines from national authorities on the consumption of ready to eat foods.
Collapse
Affiliation(s)
- Mahmoud E. Elsayed
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Attia El-Gedawy
- Department of Bacteriology, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Mahmoud M. Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
- Correspondence: or ; Tel.: +20-12-275-50629 or +20-11-276-80279
| | - Reham M. ELTarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Science, Taif University, Taif 26432, Saudi Arabia
- Centre of Biomedical Science Research (CBSR), Deanship of Scientific Research, Taif University, Taif 26432, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Science, Taif University, Taif 26432, Saudi Arabia
- Centre of Biomedical Science Research (CBSR), Deanship of Scientific Research, Taif University, Taif 26432, Saudi Arabia
| | - Saleh A. Alghamdi
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Science, Taif University, Taif 26432, Saudi Arabia
- Centre of Biomedical Science Research (CBSR), Deanship of Scientific Research, Taif University, Taif 26432, Saudi Arabia
| | - Marwa Arnout
- Veterinary Quarantine, Cairo Airport, Zagazig 44511, Egypt
| | - Dalal N. Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Amira I. Abousaty
- Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|