1
|
Wang H, Strock J, Ranaivoson A, Ishii S. Bioremediation of nitrate in agricultural drainage ditches: Impacts of low-grade weirs on microbiomes and nitrogen cycle gene abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177070. [PMID: 39454790 DOI: 10.1016/j.scitotenv.2024.177070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Artificial drainage is essential for the success of modern agriculture, but it can also accelerate the movement of nutrients, especially nitrate, from soil to surrounding and downstream water bodies. Removal of nitrate from agricultural drainage by using controlled drainage systems, such as ditches installed with low-grade weirs, has been shown to help reduce nutrient loading into watersheds. However, the effect of low-grade weirs varies greatly, likely due to the differences in climate, system designs (e.g., hydraulic characteristics), and the resulting variation in microbial structures and functions in the ditch. In this study, we analyzed the temporal and spatial dynamics of microbiomes in a paired ditch system with weir-installed and uninstalled (control) channels over two years by using the 16S rRNA gene amplicon sequencing and the high-throughput quantitative PCR targeting various N cycle-associated genes [the Nitrogen Cycle Evaluation (NiCE) chip]. The installation of the low-grade weir had a significant impact on the microbiome structure and the distribution of denitrifiers. Microbiome structures also differed significantly between the ditch inlets and the outlets. Denitrification functional genes were more abundant in the inlets than in the other locations and in the channel installed with a low-grade weir. Additionally, oxygenic denitrifiers that use nitric oxide dismutase (nod) to produce N2 and O2 gases from nitric oxide were detected in the ditch channels, suggesting the occurrence of nitrate removal process that bypasses the production of nitrous oxide (N2O). The ditch microbiomes sampled during high-flow seasons (i.e., spring and fall) exhibited greater similarity to each other than microbiomes sampled during low-flow seasons (i.e., summer). Taken together, this study indicates that the low-grade weirs have the potential to foster a more favorable environment for denitrifiers, resulting in an increase in the abundance of denitrification functional genes. These findings could offer valuable insights into system management and optimization strategies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA
| | - Jeffrey Strock
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; Southwest Research and Outreach Center, University of Minnesota, 23669 130th St., Lamberton, MN 56152, USA
| | - Andry Ranaivoson
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; Southwest Research and Outreach Center, University of Minnesota, 23669 130th St., Lamberton, MN 56152, USA
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St. Paul, MN 55108, USA.
| |
Collapse
|
2
|
Li J, Han T, Liu K, Shen Z, Daba NA, Tadesse KA, Khan MN, Shah A, Wang Z, Zhang H. Optimizing potassium and nitrogen fertilizer strategies to mitigate greenhouse gas emissions in global agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170270. [PMID: 38278248 DOI: 10.1016/j.scitotenv.2024.170270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
The efficient management of fertilizer application in agriculture is vital for both food security and mitigating greenhouse gas (GHG) emissions. However, as potassium fertilizer (KF) is an essential soil nutrient, its impact on soil GHG emissions has received little attention. To address this knowledge gap and identify key determinants of GHG emissions, we conducted a comprehensive meta-analysis of 205 independent experiments conducted worldwide. Our results revealed that, in comparison to sole nitrogen fertilizer (NF) application, the concurrent use of KF elevated nitrous oxide (N2O) and methane (CH4) emissions by 39.5 % and 21.1 %, respectively, while concurrently reducing carbon dioxide (CO2) emissions by 8.1 %. The ratio of nitrogen and potassium fertilizer input (NF/KF) is identified as the primary factor explaining the variation in N2O emissions, whereas the type of KF plays a crucial role in determining CH4 and CO2 emissions. We observed a significant negative correlation between the NF/KF ratio and response ratios of N2O and CH4 emissions and a positive correlation with CO2 emissions response ratios. Furthermore, our findings indicate that when the NF/KF ratio surpasses 1.97, 4.61, and 3.78, respectively, the impact of KF on reducing N2O, CH4, and CO2 emissions stabilizes. Overall, our results underscore that the global integration of KF into agricultural practices significantly influences N2O and CH4 emissions, while simultaneously reducing CO2 emissions at a large scale. These findings provide a foundational framework and practical guidance for optimizing fertilizer application in the development of GHG emission reduction models.
Collapse
Affiliation(s)
- Jiwen Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianfu Han
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kailou Liu
- Jiangxi Institute of Red Soil and Germplasm Resources, Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, P. R. Jinxian, Jiangxi 331717, China
| | - Zhe Shen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nano Alemu Daba
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Plant Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Kiya Adare Tadesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Plant Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Muhammad Numan Khan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Asad Shah
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhufeng Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huimin Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Qiyang Farmland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan 426182, China.
| |
Collapse
|
3
|
Zhang X, Peng J, Hao X, Feng G, Shen Y, Wang G, Chen Z. Serratia marcescens LYGN1 Reforms the Rhizosphere Microbial Community and Promotes Cucumber and Pepper Growth in Plug Seedling Cultivation. PLANTS (BASEL, SWITZERLAND) 2024; 13:592. [PMID: 38475438 DOI: 10.3390/plants13050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The vegetable plug seedling plays an important role in improving vegetable production. The process of plug seedling contributes to high-quality vegetable seedlings. The substrate composition and chemical fertilizer are widely studied to promote seedling growth. However, little is known about the effect of beneficial bacteria in the rhizosphere microbial community and vegetables' growth during plug seedling. The use of beneficial microbes to promote vegetable seedling growth is of great potential. In this study, we showed that the Serratia marcescens strain LYGN1 enhanced the growth of cucumber and pepper seedlings in plug seedling cultivation. The treatment with LYGN1 significantly increased the biomass and the growth-related index of cucumber and pepper, improving the seedling quality index. Specifically, LYGN1 also improved the cucumber and pepper root system architecture and increased the root diameter. We applied high-throughput sequencing to analyze the microbial community of the seedlings' rhizosphere, which showed LYGN1 to significantly change the composition and structure of the cucumber and pepper rhizosphere microbial communities. The correlation analysis showed that the Abditibacteriota and Bdellovibrionota had positive effects on seedling growth. The findings of this study provide evidence for the effects of Serratia marcescens LYGN1 on the cucumber and pepper rhizosphere microbial communities, which also promoted seedling quality in plug seedling cultivation.
Collapse
Affiliation(s)
- Xu Zhang
- College of Life Science, Linyi University, Linyi 276000, China
| | - Jinxin Peng
- College of Life Science, Linyi University, Linyi 276000, China
| | - Xiaodong Hao
- College of Life Science, Linyi University, Linyi 276000, China
| | - Guifang Feng
- College of Life Science, Linyi University, Linyi 276000, China
| | - Yanhui Shen
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Zhiqun Chen
- College of Life Science, Linyi University, Linyi 276000, China
| |
Collapse
|
4
|
Miao Z, Bai Y, Wang X, Han C, Wang B, Li Z, Sun J, Zheng F, Zhang Y, Sun B. Unravelling Metabolic Heterogeneity of Chinese Baijiu Fermentation in Age-Gradient Vessels. Foods 2023; 12:3425. [PMID: 37761135 PMCID: PMC10530105 DOI: 10.3390/foods12183425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Fermentation vessels affect the characteristics of food fermentation; however, we lack an approach to identify the biomarkers indicating fermentation. In this study, we applied metabolomics and high-throughput sequencing analysis to reveal the dynamic of metabolites and microbial communities in age-gradient fermentation vessels for baijiu production. Furthermore, we identified 64 metabolites during fermentation, and 19 metabolites significantly varied among the three vessels (p < 0.05). Moreover, the formation of these 19 metabolites were positively correlated with the core microbiota (including Aspergillus, Saccharomyces, Lactobacillus, and Bacillus). In addition, ethyl lactate or ethyl acetate were identified as the biomarkers for indicating the metabolism among age-gradient fermentation vessels by BP-ANN (R2 > 0.40). Therefore, this study combined the biological analysis and predictive model to identify the biomarkers indicating metabolism in different fermentation vessels, and it also provides a potential approach to assess the profiling of food fermentations.
Collapse
Affiliation(s)
- Zijian Miao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yu Bai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xinlei Wang
- Hebei Solid State Fermentation Making Industry Technology Research Institute, Hebei Baijiu Making Technology Innovation Center, Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053000, China; (X.W.); (C.H.); (Z.L.); (Y.Z.)
| | - Chao Han
- Hebei Solid State Fermentation Making Industry Technology Research Institute, Hebei Baijiu Making Technology Innovation Center, Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053000, China; (X.W.); (C.H.); (Z.L.); (Y.Z.)
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zexia Li
- Hebei Solid State Fermentation Making Industry Technology Research Institute, Hebei Baijiu Making Technology Innovation Center, Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053000, China; (X.W.); (C.H.); (Z.L.); (Y.Z.)
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhang Zhang
- Hebei Solid State Fermentation Making Industry Technology Research Institute, Hebei Baijiu Making Technology Innovation Center, Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053000, China; (X.W.); (C.H.); (Z.L.); (Y.Z.)
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Zhang F, Chen M, Fu J, Zhang X, Li Y, Xing Y. Effects of drip irrigation on yield, soil fertility and soil enzyme activity of different potato varieties in Northwest China. FRONTIERS IN PLANT SCIENCE 2023; 14:1240196. [PMID: 37711292 PMCID: PMC10498121 DOI: 10.3389/fpls.2023.1240196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
The effects of different irrigation and fertilization on potato yield, soil fertility and soil enzyme activity of different varieties under drip irrigation fertilization mode were studied, which could provide support for selecting the best varieties in Northwest China. Three factors and three levels orthogonal experimental design method, a total of nine treatments. The three irrigation levels were W1 (100% crop evapotranspiration (ETC)), W2 (80% ETC) and W3 (60% ETC). The three fertilization levels were F1 (N-P2O5-K2O, 240-120-300 kg ha-1), F2 (180-90-225 kg ha-1) and F3 (120-60-150 kg ha-1). The three varieties were V1 (Feiuritar), V2 (Longshu7) and V3 (Qingshu 9). The results showed that different irrigation and fertilization had significant effects on potato yield, soil fertility and soil enzyme activity in root zone. The highest yield of T5 (80%ETC, 180-90-225 kg ha-1, Qingshu 9) was 49,222.3 kg ha-1. With the increase of fertilizer application rate, potato yield and soil enzyme activity in root zone increased first and then decreased, but soil electrical conductivity (SEC), soil nitrate-N content (SNNC), soil alkali-hydrolyzable nitrogen content (SAHC), soil available potassium (AK), soil available phosphorus (AP), soil ammonium-N content (SANC) and soil organic matter (SOM) in root zone increased continuously. The yield, soil catalase activity, soil urease activity and soil sucrase activity at W2 were 2.81% and 22.2%, 1.84% and 7.04%, 8.26% and 9.62%, 5.34% and 13.36% higher than those at W1 and W3, respectively. The overall trend of soil water content, soil nutrient content and enzyme activity in root zone was 0-20 cm >20-40 cm >40-60 cm soil layer. There were many soil factors affecting tuber yield, among which soil enzyme activity, pH value and root zone conductivity were the key factors. The results showed that T5 (80%ETC, 180-90-225 kg ha-1, Qingshu 9) was the best treatment to improve soil enzyme activity and yield.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingying Xing
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
6
|
Mortuza MF, Djedidi S, Ito T, Agake SI, Sekimoto H, Yokoyama T, Okazaki S, Ohkama-Ohtsu N. Genetic and Physiological Characterization of Soybean-Nodule-Derived Isolates from Bangladeshi Soils Revealed Diverse Array of Bacteria with Potential Bradyrhizobia for Biofertilizers. Microorganisms 2022; 10:2282. [PMID: 36422352 PMCID: PMC9698105 DOI: 10.3390/microorganisms10112282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2023] Open
Abstract
Genetic and physiological characterization of bacteria derived from nodules of leguminous plants in the exploration of biofertilizer is of paramount importance from agricultural and environmental perspectives. Phylogenetic analysis of the 16S rRNA gene of 84 isolates derived from Bangladeshi soils revealed an unpredictably diverse array of nodule-forming and endosymbiotic bacteria-mostly belonging to the genus Bradyrhizobium. A sequence analysis of the symbiotic genes (nifH and nodD1) revealed similarities with the 16S rRNA gene tree, with few discrepancies. A phylogenetic analysis of the partial rrn operon (16S-ITS-23S) and multi-locus sequence analysis of atpD, glnII, and gyrB identified that the Bradyrhizobium isolates belonged to Bradyrhizobium diazoefficiens, Bradyrhizobium elkanii, Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense species. In the pot experiment, several isolates showed better activity than B. diazoefficiens USDA110, and the Bho-P2-B2-S1-51 isolate of B. liaoningense showed significantly higher acetylene reduction activity in both Glycine max cv. Enrei and Binasoybean-3 varieties and biomass production increased by 9% in the Binasoybean-3 variety. Tha-P2-B1-S1-68 isolate of B. diazoefficiens significantly enhanced shoot length and induced 10% biomass production in Binasoybean-3. These isolates grew at 1-4% NaCl concentration and pH 4.5-10 and survived at 45 °C, making the isolates potential candidates for eco-friendly soybean biofertilizers in salty and tropical regions.
Collapse
Affiliation(s)
- Md Firoz Mortuza
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Ganakbari, Savar, Dhaka 1207, Bangladesh
| | - Salem Djedidi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shin-ichiro Agake
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Harumi-cho 3-8-1, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hitoshi Sekimoto
- Faculty of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima-shi, Fukushima 960-1248, Japan
| | - Shin Okazaki
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Harumi-cho 3-8-1, Fuchu-shi, Tokyo 183-8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|