1
|
T N VV, Premnath M, Stanley JV, Paul N, Mathew J, Radhakrishnan EK. Whole genome sequencing based prediction of antimicrobial resistance evolution among the predominant bacterial pathogens of diabetic foot ulcer. World J Microbiol Biotechnol 2025; 41:161. [PMID: 40312599 DOI: 10.1007/s11274-025-04362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Emerging antibiotic resistance among bacterial pathogens of diabetic foot ulcers (DFUs) cause a significant threat to the human health. In the study, deep ulcer swabs were collected from 70 diabetic patients with foot ulcer. Among the 187 bacterial strains purified from the same, major representations were identified to be from Klebsiella pneumoniae and Staphylococcus spp. Here, polymicrobial infection (87.14%) was found to be more prevalent than monomicrobial (12.86%). From the antibiotic susceptibility test results, 34 bacterial isolates were identified as MDR pathogens with resistance to β-lactam and carbapenem classes of antibiotics. Furthermore, molecular screening has revealed the presence of antibiotic resistance gene such as blaSHV,blaCTX-M, blaTEM,blaOXA-48, NDM-1, mecA and blaZ genes among the isolates studied. Biofilm analysis has further revealed 31 strains to have strong and 3 with moderate biofilm production property. Among the MDR strains, K. pneumoniae (DFU2.2) and methicillin-resistant S. aureus (MRSA) (DFU24.3) were subjected to the whole-genome sequencing (WGS) based analysis due to their significant role in the chronicity of DFUs. The resistome prediction from the WGS data of DFU2.2 has revealed it to have the presence of a novel extended β-lactamase gene blaSHV-106 which has not been reported previously from India. Pan-genome analysis of DFU2.2 and DFU24.3 has also provided detailed insight into the genetic diversity, evolution, and pathogenic potential of the selected strains. The findings of this study hence suggest the emerging AMR to be one of the major risk factors challenging the therapeutic response of DFUs, the incidence of which is alarmingly high.
Collapse
Affiliation(s)
- Vipina Vinod T N
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Manjusha Premnath
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Jos V Stanley
- Department of General Surgery, Government Medical College, Kottayam, Kerala, 686008, India
| | - Nimmy Paul
- Department of Microbiology, Government Medical College, Kottayam, Kerala, 686008, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
2
|
Gao X, Jia S, Ma L, Pan Y, Ye L, Zhang XX, Zhou Q, Li A, Shi P. Prolonged Exposure to Environmentally Relevant Concentrations of Chlorine Induces Heritable Antimicrobial Resistance in Disinfection Residual Pseudomonas aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3895-3905. [PMID: 39970936 DOI: 10.1021/acs.est.4c12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chlorination, a crucial step in pathogen control, raises concerns due to the potential residual chlorine presence during water treatment and sanitation. However, the consequences of prolonged exposure to environmentally relevant chlorine concentrations on antimicrobial resistance (AMR) evolution and its driving mechanism in bacteria remain unclear. Therefore, this study utilized a combination of phenotypic and genotypic analyses, revealing that chlorination at concentrations of 0.2-0.4 mg/L induced enduring cross-resistance to both chlorine and multiple antibiotics (β-lactams, tetracyclines, sulfonamides, and chloramphenicol) in Pseudomonas aeruginosa after 3 days of exposure. Both Escherichia coli and P. aeruginosa exhibited outer membrane (OM) damages, evidenced by adenosine triphosphate and reactive oxygen species, though P. aeruginosa displayed stepwise OM resilience over prolonged exposure. Transcriptomic analyses of resistant P. aeruginosa unveiled heightened metabolic activity and a reinforced OM barrier after exposure. Weighted gene coexpression network analysis highlighted the pivotal role of a fortified bacterial OM, featuring activated efflux systems and modified lipopolysaccharides, in developing cross-resistance. Overexpression and mutation in mexXY-OprM and muxABC-OpmB efflux systems, along with reduced membrane electronegativity, confirmed that hereditary genetic adaptation drove AMR evolution. This study provides valuable insights into potential strategies for mitigating AMR evolution under residual chlorine disinfection.
Collapse
Affiliation(s)
- Xinran Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Jiang Y, Qiao Y, Jin R, Jia M, Liu J, He Z, Liu Z. Application of chlorine dioxide and its disinfection mechanism. Arch Microbiol 2024; 206:400. [PMID: 39256286 DOI: 10.1007/s00203-024-04137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 09/08/2024] [Indexed: 09/12/2024]
Abstract
Chlorine dioxide (ClO2) is a strong oxidizing agent and an efficient disinfectant. Due to its broad-spectrum bactericidal properties, good inactivation effect on the vast majority of bacteria and pathogenic microorganisms, low resistance to drugs, and low generation of halogenated by-products, chlorine dioxide is widely used in fields such as water purification, food safety, medical and public health, and living environment. This review introduced the properties and application status of chlorine dioxide, compared the action mode, advantages and disadvantages of various disinfectants. The mechanism of chlorine dioxide inactivating bacteria, fungi and viruses were reviewed. The lethal target of chlorine dioxide to bacteria and fungi is to destroy the structure of cell membrane, change the permeability of cell membrane, and make intracellular substances flow out, leading to their death. The lethal targets for viruses are the destruction of viral protein capsids and the degradation of RNA fragments. The purpose of this review is to provide more scientific guidance for the application of chlorine dioxide disinfectants.
Collapse
Affiliation(s)
- Yu Jiang
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China.
| | - Riya Jin
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China.
| | - Mengye Jia
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| | - Jiaoqin Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| | - Zengdi He
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| | - Zhaoguo Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, P.R. China
| |
Collapse
|
4
|
Castaño-Henao L, Mendez DFG, Egan S, Sanabria J. Changes in groundwater and surface water bacterial communities under disinfection processes: Chlorination, ozonization, photo-fenton and ultraviolet radiation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100244. [PMID: 38974672 PMCID: PMC11225702 DOI: 10.1016/j.crmicr.2024.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/07/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Pathogenic bacteria, introduced in water sources through faecal contamination, have traditionally been investigated as individual species, leading to the establishment of microbial, sanitary, and environmental quality indicators. Recent advancements in our understanding of the microbiome and its intricate interactions within the human-microbiome-environment network advocate for a broader evaluation of the impact of disinfection on the entire microbial community. In this study, we conducted a comprehensive screening experiment involving four disinfection processes; ozone, ultraviolet radiation with wavelengths between 200 - 280 nm (UV-C), photo-Fenton, and chlorination, applied to two distinct water sources; surface (SW) and groundwater (GW). The cells that remained viable after treatment were recovered using Brain Heart Infusion (BHI) broth, and 16S rRNA gene sequencing was used for their identification. Our findings confirmed the presence of faecal contamination in the water sources and revealed distinct effects of each treatment on the recovered bacterial populations. The chlorination of groundwater samples likely had a greater impact on bacteria in a vegetative state than on spores. Consequently, this led to a higher abundance in the BHI cultures of sporulating bacteria such as Bacillus (increasing from 0.36 to 93.62 %), while ozonation led to an elevated recovery of Pseudomonas (increasing from 45.2 to 69.9 %). Conversely, in surface water, calcium hypochlorite and ozone treatments favored the selection of Staphylococcus and Bacillus, whose relative abundance in the cultures increased from 0 to 39.22 % and from 0.35 to 96.6 %, respectively. In groundwater, Pseudomonas was resistant to UV-C radiation and their relative abundance increased from 45.2 % to 93.56 %, while photo-Fenton was effective against this bacterial group decreasing its relative abundance to 0.46 %. However, other genera such as Bacteroides, Aeromonas, and Citrobacter seemed to be less injured by this disinfection process. BHI broth was successful in recovering various bacterial groups that exhibited resistance to sublethal water disinfection.
Collapse
Affiliation(s)
- Lucía Castaño-Henao
- Environmental Microbiology and Biotechnology Laboratory, Engineering Faculty, Engineering School of Environmental & Natural Resources, Universidad del Valle - Mélendez Campus, Calle 13 # 100 -00, Cali, Colombia
| | | | - Siobhon Egan
- Australian National Phenome Centre, Murdoch University, Perth, WA 6150, Australia
| | - Janeth Sanabria
- Environmental Microbiology and Biotechnology Laboratory, Engineering Faculty, Engineering School of Environmental & Natural Resources, Universidad del Valle - Mélendez Campus, Calle 13 # 100 -00, Cali, Colombia
- Australian National Phenome Centre, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
5
|
Hanafiah A, Sukri A, Yusoff H, Chan CS, Hazrin-Chong NH, Salleh SA, Neoh HM. Insights into the Microbiome and Antibiotic Resistance Genes from Hospital Environmental Surfaces: A Prime Source of Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:127. [PMID: 38391513 PMCID: PMC10885873 DOI: 10.3390/antibiotics13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Hospital environmental surfaces are potential reservoirs for transmitting hospital-associated pathogens. This study aimed to profile microbiomes and antibiotic resistance genes (ARGs) from hospital environmental surfaces using 16S rRNA amplicon and metagenomic sequencing at a tertiary teaching hospital in Malaysia. Samples were collected from patient sinks and healthcare staff counters at surgery and orthopaedic wards. The samples' DNA were subjected to 16S rRNA amplicon and shotgun sequencing to identify bacterial taxonomic profiles, antibiotic resistance genes, and virulence factor pathways. The bacterial richness was more diverse in the samples collected from patient sinks than those collected from staff counters. Proteobacteria and Verrucomicrobia dominated at the phylum level, while Bacillus, Staphylococcus, Pseudomonas, and Acinetobacter dominated at the genus level. Staphylococcus epidermidis and Staphylococcus aureus were prevalent on sinks while Bacillus cereus dominated the counter samples. The highest counts of ARGs to beta-lactam were detected, followed by ARGs against fosfomycin and cephalosporin. We report the detection of mcr-10.1 that confers resistance to colistin at a hospital setting in Malaysia. The virulence gene pathways that aid in antibiotic resistance gene transfer between bacteria were identified. Environmental surfaces serve as potential reservoirs for nosocomial infections and require mitigation strategies to control the spread of antibiotic resistance bacteria.
Collapse
Affiliation(s)
- Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Hamidah Yusoff
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Nur Hazlin Hazrin-Chong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sharifah Azura Salleh
- Infection Control Unit, Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hui-Min Neoh
- UKM Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|