1
|
Sahu N, Lavania M, Banerjee D, Chawla M, Lal B. Evaluation of microbial diversity in the formation water of the producer and marginal wells in bokaro coal field. Sci Rep 2024; 14:29572. [PMID: 39609485 PMCID: PMC11605091 DOI: 10.1038/s41598-024-61996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/13/2024] [Indexed: 11/30/2024] Open
Abstract
The rise in global energy demand has prompted research on developing strategies for transforming conventional nonrenewable sources to cleaner fuels. Biogenic methane production is a promising source that caters to increasing energy demands. Therefore, research to enhance their production is of great importance. Implementation of successful enhancement strategies requires knowledge of the factors impacting coalbed methane production. The microbial diversity of the formation water in coal seams is the crucial parameter influencing biomethane production. This study explores microbial diversity in the Producing and Marginal wells of Bokaro, India, intending to understand the potential application of microbial-enhanced coalbed methane technology in the marginal wells of this reservoir. The high throughput sequencing analysis revealed the presence of both archaeal and bacterial groups in both well types. The result showed significant differences in the diversity of the samples from the two well groups, suggesting the immense role played by the microbes in producing methane gas. Random forest analysis shows genera Gelria, Methanothermobacter, Thaurea, Youngiibacter, and Proteiniclasticum in the Producing wells while Roseomonas, Rhodobacter, Mycobacterium, Methylobacter, and Bosea in the Marginal wells as the significant contributor in differentiating the overall diversity between the wells of Bokaro. The current study is the first to show microbial uniqueness in coalbed methane wells based on gas production efficiency. It also explores the role of physicochemical factors in framing microbial community structure in the wells. The results provide salient information that will help better understand the impact of microbial diversity on the production of coalbed methane wells of studied coal seams. This knowledge will further aid in exploring the prospects of microbial-enhanced methane in the Marginal wells.
Collapse
Affiliation(s)
- Nishi Sahu
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| | - Meeta Lavania
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India.
| | - Dipanjana Banerjee
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| | - Mansi Chawla
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| | - Banwari Lal
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| |
Collapse
|
2
|
Mukherjee D, Selvi VA, Ganguly J, Masto RE. New insights into the coal-associated methane architect: the ancient archaebacteria. Arch Microbiol 2024; 206:234. [PMID: 38664262 DOI: 10.1007/s00203-024-03961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 05/20/2024]
Abstract
Exploration and marketable exploitation of coalbed methane (CBM) as cleaner fuel has been started globally. In addition, incidence of methane in coal basins is an imperative fraction of global carbon cycle. Significantly, subsurface coal ecosystem contains methane forming archaea. There is a rising attention in optimizing microbial coal gasification to exploit the abundant or inexpensive coal reserves worldwide. Therefore, it is essential to understand the coalbeds in geo-microbial perspective. Current review provides an in-depth analysis of recent advances in our understanding of how methanoarchaea are distributed in coal deposits globally. Specially, we highlight the findings on coal-associated methanoarchaeal existence, abundance, diversity, metabolic activity, and biogeography in diverse coal basins worldwide. Growing evidences indicates that we have arrived an exciting era of archaeal research. Moreover, gasification of coal into methane by utilizing microbial methanogenesis is a considerable way to mitigate the energy crisis for the rising world population.
Collapse
Affiliation(s)
- Diptangshu Mukherjee
- Industrial Biotechnology and Waste Utilization Research Group, CSIR-Central Institute of Mining and Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand, 828108, India
| | - Vetrivel Angu Selvi
- Industrial Biotechnology and Waste Utilization Research Group, CSIR-Central Institute of Mining and Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand, 828108, India.
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, PO Botanical Garden, Howrah, West Bengal, 711103, India
| | - Reginald Ebhin Masto
- Industrial Biotechnology and Waste Utilization Research Group, CSIR-Central Institute of Mining and Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand, 828108, India
| |
Collapse
|
3
|
Phulpoto IA, Qi Z, Qazi MA, Yu Z. Biosurfactants-based mixed polycyclic aromatic hydrocarbon degradation: From microbial community structure toward non-targeted metabolomic profile determination. ENVIRONMENT INTERNATIONAL 2024; 184:108448. [PMID: 38246038 DOI: 10.1016/j.envint.2024.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Biosurfactants-based bioremediation is considered an efficient technology to eliminate environmental pollutants including polycyclic aromatic hydrocarbons (PAHs). However, the precise role of rhamnolipids or lipopeptide-biosurfactants in mixed PAH dissipation, shaping microbial community structure, and influencing metabolomic profile remained unclear. In this study, results showed that the maximum PAH degradation was achieved in lipopeptide-assisted treatment (SPS), where the pyrene and phenanthrene were substantially degraded up to 74.28 % and 63.05 % respectively, as compared to rhamnolipids (SPR) and un-aided biosurfactants (SP). Furthermore, the high throughput sequencing analysis revealed a significant change in the PAH-degrading microbial community, with Proteobacteria being the predominant phylum (>98 %) followed by Bacteroidota and Firmicutes in all the treatments. Moreover, Pseudomonas and Pannonibacter were found as highly potent bacterial genera for mixed PAH degradation in SPR, SPS, and SP treatments, nevertheless, the abundance of the genus Pseudomonas was significantly enhanced (>97 %) in SPR treatment groups. On the other hand, the non-targeted metabolomic profile through UHPLC-MS/MS exhibited a remarkable change in the metabolites of amino acids, carbohydrates, and lipid metabolisms by the input of rhamnolipids or lipopeptide-biosurfactants whereas, the maximum intensities of metabolites (more than two-fold) were observed in SPR treatment. The findings of this study suggested that the aforementioned biosurfactants can play an indispensable role in mixed PAH degradation as well as seek to offer new insights into shifts in PAH-degrading microbial communities and their metabolic function, which can guide the development of more efficient and targeted strategies for complete removal of organic pollutants such as PAH from the contaminated environment.
Collapse
Affiliation(s)
- Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong Province, PR China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's 66020, Sindh, Pakistan; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, PR China
| | - Zhang Qi
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Muneer Ahmed Qazi
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's 66020, Sindh, Pakistan
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong Province, PR China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, PR China.
| |
Collapse
|
4
|
Li Y, Chen J, Tang S, Xi Z. Microbial Communities Affected by Hydraulic Fracturing and Environmental Factors within an In Situ Coal Reservoir. Microorganisms 2023; 11:1657. [PMID: 37512830 PMCID: PMC10385777 DOI: 10.3390/microorganisms11071657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The rise of coalbed methane bioengineering enables the conversion and utilization of carbon dioxide through microbial action and the carbon cycle. The environment of underground coal reservoirs is the result of a comprehensive effort by microorganisms. Some studies on reservoir microorganisms have progressed in laboratory conditions. However, it does not replicate the interaction between microorganisms and the environment on site. Hydraulic fracturing is an engineering technology to improve the natural permeability of tight reservoirs and is also a prerequisite for increasing biomethane production. In addition to expanding the pore and fracture systems of coal reservoirs, hydraulic fracturing also improves the living conditions of microbial communities in underground space. The characteristics of microbial communities in the reservoir after hydraulic fracturing are unclear. To this end, we applied the 16S rRNA sequencing technique to coalbed methane production water after hydraulic fracturing south of the Qinshui Basin to analyze the microbial response of the hydraulic fracturing process in the coal reservoir. The diversity of microbial communities associated with organic degradation was improved after hydraulic fracturing in the coal reservoir. The proportion of Actinobacteria in the reservoir water of the study area increased significantly, and the abundance of Aminicenantes and Planctomycetes increased, which do not exist in non-fracturing coalbed methane wells or exist at very low abundance. There are different types of methanogens in the study area, especially in fracturing wells. Ecological factors also determine the metabolic pathway of methanogens in coal seams. After hydraulic fracturing, the impact on the reservoir's microbial communities remains within months. Hydraulic fracturing can strengthen the carbon circulation process, thereby enhancing the block's methane and carbon dioxide circulation. The study provides a unique theoretical basis for microbially enhanced coalbed methane.
Collapse
Affiliation(s)
- Yang Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
- The Key Laboratory of Universities in Anhui Province for Prevention of Mine Geological Disasters, Anhui University of Science and Technology, Huainan 232001, China
- Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Jian Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
- The Key Laboratory of Universities in Anhui Province for Prevention of Mine Geological Disasters, Anhui University of Science and Technology, Huainan 232001, China
| | - Shuheng Tang
- School of Energy Resource, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Ministry of Education, Beijing 100083, China
- Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China
| | - Zhaodong Xi
- School of Energy Resource, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Ministry of Education, Beijing 100083, China
- Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China
| |
Collapse
|