1
|
Salzman S, Bustos‐Díaz ED, Whitaker MRL, Sierra AM, Cibrián‐Jaramillo A, Barona‐Gómez F, Villarreal Aguilar JC. Chemical ecology of symbioses in cycads, an ancient plant lineage. THE NEW PHYTOLOGIST 2025; 246:1494-1504. [PMID: 40152178 PMCID: PMC12018785 DOI: 10.1111/nph.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
Cycads are an ancient lineage of gymnosperms that maintain a plethora of symbiotic associations from across the tree of life. They have myriad morphological, structural, physiological, chemical, and behavioral adaptations that position them as a unique system to study the evolution, ecology, and mechanism of symbiosis. To this end, we have provided an overview of cycad symbiosis biology covering insects, bacteria, and fungi, and discuss the most recent advances in the underlying chemical ecology of these associations.
Collapse
Affiliation(s)
- Shayla Salzman
- Department of EntomologyUniversity of GeorgiaAthensGA30602USA
| | | | | | - Adriel M. Sierra
- Département de BiologieUniversité LavalG1V 0A6Québec CityQuebecCanada
| | | | - Francisco Barona‐Gómez
- Evolution of Microbial Chemodiversity LaboratoryInstitute of Biology, Leiden University2333 BELeidenthe Netherlands
| | - Juan Carlos Villarreal Aguilar
- Département de BiologieUniversité LavalG1V 0A6Québec CityQuebecCanada
- Smithsonian Tropical Research Institute (STRI)AncónPanama
| |
Collapse
|
2
|
Murthy MK. Environmental dynamics of pesticides: sources, impacts on amphibians, nanoparticles, and endophytic microorganism remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7860-7893. [PMID: 40069476 DOI: 10.1007/s11356-025-36216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Pesticides, which are widely used in agriculture, have elicited notable environmental concern because they persist and may be toxic. The environmental dynamics of pesticides were reviewed with a focus on their sources, impacts on amphibians, and imminent remediation options. Pesticides are directly applied in ecosystems, run off into water bodies, are deposited in the atmosphere, and often accumulate in the soil and water bodies. Pesticide exposure is particularly problematic for amphibians, which are sensitive indicators of the environment's health and suffer from physiological, behavioral, and developmental disruption that has "pushed them to the brink of extinction." Finally, this review discusses the nanoparticles that can be used to tackle pesticide pollution. However, nanoparticles with large surface areas and reactivity have the potential to degrade or adsorb pesticide residues during sustainable remediation processes. Symbiotic microbes living inside plants, known as endophytic microorganisms, can detoxify pesticides. Reducing pesticide bioavailability improves plant resilience by increasing the number of metabolizing microorganisms. Synergy between nanoparticle technology and endophytic microorganisms can mitigate pesticide contamination. Results show that Interdisciplinary research is necessary to improve the application of these strategies to minimize the ecological risk of pesticides. Eco-friendly remediation techniques that promote sustainable agricultural practices, while protecting amphibian populations and ecosystem health, have advanced our understanding of pesticide dynamics.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab - 140401, India.
| |
Collapse
|
3
|
Koellsch C, Poulin R, Salloum PM. What shapes a microbiome? Differences in bacterial communities associated with helminth-amphipod interactions. Int J Parasitol 2024; 54:733-742. [PMID: 39209213 DOI: 10.1016/j.ijpara.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The fast technological advances of molecular tools have enabled us to uncover a new dimension hidden within parasites and their hosts: their microbiomes. Increasingly, parasitologists characterise host microbiome changes in the face of parasitic infections, revealing the potential of these microscopic fast-evolving entities to influence host-parasite interactions. However, most of the changes in host microbiomes seem to depend on the host and parasite species in question. Furthermore, we should understand the relative role of parasitic infections as microbiome modulators when compared with other microbiome-impacting factors (e.g., host size, age, sex). Here, we characterised the microbiome of a single intermediate host species infected by two parasites belonging to different phyla: the acanthocephalan Plagiorhynchus allisonae and a dilepidid cestode, both infecting Transorchestia serrulata amphipods collected simultaneously from the same locality. We used the v4 hypervariable region of the 16S rRNA prokaryotic gene to identify the hemolymph bacterial community of uninfected, acanthocephalan-infected, and cestode-infected amphipods, as well as the bacteria in the amphipods' immediate environment and in the parasites infecting them. Our results show that parasitic infections were more strongly associated with differences in host bacterial community richness than amphipod size, presence of amphipod eggs in female amphipods, and even parasite load. Amphipods infected by acanthocephalans had the most divergent bacterial community, with a marked decrease in alpha diversity compared with cestode-infected and uninfected hosts. In accordance with the species-specific nature of microbiome changes in parasitic infections, we found unique microbial taxa associating with hosts infected by each parasite species, as well as taxa only shared between a parasite species and their infected hosts. However, there were some bacterial taxa detected in all parasitised amphipods (regardless of the parasite species), but not in uninfected amphipods or the environment. We propose that shared bacteria associated with all hosts parasitised by distantly related helminths may be important either in helping host defences or parasites' success, and could thus interact with host-parasite evolution.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
4
|
Lorenzi AS, Chia MA. Cyanobacteria's power trio: auxin, siderophores, and nitrogen fixation to foster thriving agriculture. World J Microbiol Biotechnol 2024; 40:381. [PMID: 39532755 DOI: 10.1007/s11274-024-04191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Cyanobacteria, often overlooked in traditional agriculture, are gaining recognition for their roles in enhancing plant growth and soil health through diverse mechanisms. This review examines their multifaceted contributions to agricultural systems, highlighting their proficiency in auxin production, which promotes plant growth and development. Additionally, we examined cyanobacteria's ability to produce siderophores that enhance iron absorption and address micronutrient deficiencies, as well as their capacity for nitrogen fixation, which converts atmospheric nitrogen into a form that plants can utilize, all with the goal of reducing reliance on synthetic fertilizers. A meta-analysis of existing studies indicates significant positive effects of cyanobacteria on crop yield, although variability exists. While some research shows considerable yield increases, other studies report non-significant changes, suggesting benefits may depend on specific conditions and crop types. The overall random-effects model estimate indicates a significant aggregate effect, with a few exceptions, emphasizing the need for further research to optimize the use of cyanobacteria as biofertilizers. Although cyanobacteria-based products are limited in comparison to seaweed-derived alternatives, for instance, ongoing challenges include regulatory issues and production costs. Integrating cultivation with wastewater treatment could enhance competitiveness and viability in the agricultural market.
Collapse
Affiliation(s)
- Adriana Sturion Lorenzi
- Graduate Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil.
- GenomaA Biotech, Piracicaba, SP, Brazil.
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria.
- Department of Ecology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
5
|
Jiang Q, Wang Y, Yu J, Wang J, Guo S, Liu D, Yu X, Jiang L, Long G, Xi D, Chen S, Wang Y, Ding W. Using fungal-bacterial community analysis to explore potential microbiomes to manage Meloidogyne incongnita. Front Microbiol 2024; 15:1415700. [PMID: 39502417 PMCID: PMC11534710 DOI: 10.3389/fmicb.2024.1415700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Rhizosphere microbial communities strongly affect outbreaks of root-knot nematode (RKN) disease. However, little is known about the interactions among fungi, bacteria and RKN. The bacterial and fungal community compositions in the rhizospheres of four representative tobacco varieties, both resistant and susceptible to RKN, were characterized using 16S rRNA gene sequencing for bacteria and internal transcribed spacer gene sequencing for fungi. Our findings revealed that the fungi played crucial roles in facilitating the cross-kingdom and symbiotic fungal-bacterial interactions to suppress RKN. Moreover, our investigation suggested Microbacterium as a potential microbial antagonist against RKN based on its enhanced presence in RKN-resistant tobacco genotypes, and the relative abundance of Microbacterium was 34.49% greater in the rhizosphere of resistant tobacco than that of susceptible tobacco significantly. Notably, the richness of fungal community enhanced tobacco's microbe-associated resistance to RKN through the positive regulation of the richness and diversity of bacterial community and the relative abundance of Microbacterium. This study underscores the critical role of the fungus-dominated fungal-bacterial community in bolstering tobacco resistance against RKN. The potential antagonistic role of Microbacterium presents promising avenues for innovative RKN management strategies.
Collapse
Affiliation(s)
- Qipeng Jiang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yong Wang
- Liangshan Branch of Sichuan Tobacco Company, Xichang, China
| | - Jiamin Yu
- Sichuan Branch of China Tobacco Corporation, Chengdu, China
| | - Jinfeng Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Shiping Guo
- Sichuan Branch of China Tobacco Corporation, Chengdu, China
| | - Dongyang Liu
- Liangshan Branch of Sichuan Tobacco Company, Xichang, China
| | - Xiangwen Yu
- Sichuan Branch of China Tobacco Corporation, Chengdu, China
| | | | - Gang Long
- Liangshan Branch of Sichuan Tobacco Company, Xichang, China
| | - Daojiang Xi
- College of Plant Protection, Southwest University, Chongqing, China
| | - Shuhong Chen
- Liangshan Branch of Sichuan Tobacco Company, Xichang, China
| | - Yue Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Bustos-Diaz ED, Cruz-Perez A, Garfias-Gallegos D, D'Agostino PM, Gehringer MM, Cibrian-Jaramillo A, Barona-Gomez F. Phylometagenomics of cycad coralloid roots reveals shared symbiotic signals. Microb Genom 2024; 10:001207. [PMID: 38451250 PMCID: PMC10999742 DOI: 10.1099/mgen.0.001207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Cycads are known to host symbiotic cyanobacteria, including Nostocales species, as well as other sympatric bacterial taxa within their specialized coralloid roots. Yet, it is unknown if these bacteria share a phylogenetic origin and/or common genomic functions that allow them to engage in facultative symbiosis with cycad roots. To address this, we obtained metagenomic sequences from 39 coralloid roots sampled from diverse cycad species and origins in Australia and Mexico. Culture-independent shotgun metagenomic sequencing was used to validate sub-community co-cultures as an efficient approach for functional and taxonomic analysis. Our metanalysis shows a host-independent microbiome core consisting of seven bacterial orders with high species diversity within the identified taxa. Moreover, we recovered 43 cyanobacterial metagenome-assembled genomes, and in addition to Nostoc spp., symbiotic cyanobacteria of the genus Aulosira were identified for the first time. Using this robust dataset, we used phylometagenomic analysis to reveal three monophyletic cyanobiont clades, two host-generalist and one cycad-specific that includes Aulosira spp. Although the symbiotic clades have independently arisen, they are enriched in certain functional genes, such as those related to secondary metabolism. Furthermore, the taxonomic composition of associated sympatric bacterial taxa remained constant. Our research quadruples the number of cycad cyanobiont genomes and provides a robust framework to decipher cyanobacterial symbioses, with the potential of improving our understanding of symbiotic communities. This study lays a solid foundation to harness cyanobionts for agriculture and bioprospection, and assist in conservation of critically endangered cycads.
Collapse
Affiliation(s)
- Edder D. Bustos-Diaz
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Netherlands, 2333 BE, Leiden
| | - Arely Cruz-Perez
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Diego Garfias-Gallegos
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Paul M. D'Agostino
- Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Michelle M. Gehringer
- Department of Microbiology, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Angelica Cibrian-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Naturalis Biodiversity Center, Leiden 2333 CR, Netherlands
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Netherlands, 2333 BE, Leiden
| |
Collapse
|