1
|
Khan D, Shaw R, Kabiraj A, Paul A, Bandopadhyay R. Microbial inheritance through seed: a clouded area needs to be enlightened. Arch Microbiol 2025; 207:23. [PMID: 39754662 DOI: 10.1007/s00203-024-04225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Seed endophytes are actively used by the mother plant as both reservoir and vector of beneficial microbes. During seed dormancy endophytes experience significant physiochemical changes and only competent endophytes could colonise successfully in seeds and some of them act as obligate endophyte that are transmitted vertically across generations. The adaptive nature of endophytes allows them to switch lifestyles depending on environment and host conditions. In this review, instead of providing broad discussion on applicability of endophytes in plant growth improvement, the fundamental nature of endophytes, their survival strategies under stress conditions, transmittance, etc. have been broadly highlighted by collaborating recent discoveries and theories. We have also tried to differentiate endophyte with their pathogenic counterpart and their survival mechanism during seed dormancy stages. Critical analyses of physio-biochemical changes in seeds during maturation and parallel modifications of life styles of seed endophytes along with pathogens will enlighten the shaded part of seed-microbiome interactions. The mutualistic interrelations as well as their shipment towards pathogenic behaviour under stress are being discussed acutely. Finally, importances of conservation of seed microbiome to maintain seed quality and vigour have been pointed out. Throughout the manuscript, the knowledge gap on seed-microbiota have been mentioned, thus, in future, studies on these areas could help us to understand properly the actual role of endophytes for the betterment of maintaining seed quality and vigour.
Collapse
Affiliation(s)
- Dibyendu Khan
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Rajdeep Shaw
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Ashutosh Kabiraj
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Arpita Paul
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
2
|
Rain-Franco A, Le Moigne A, Serra Moncadas L, Silva MOD, Andrei AS, Pernthaler J. Dispersal shapes compositional and functional diversity in aquatic microbial communities. mSystems 2024; 9:e0140324. [PMID: 39555909 DOI: 10.1128/msystems.01403-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Segregation and mixing shape the structure and functioning of aquatic microbial communities, but their respective roles are challenging to disentangle in field studies. We explored the hypothesis that functional differences and beta diversity among stochastically assembled communities would increase in the absence of dispersal. Contrariwise, we expected biotic selection during homogenizing dispersal to reduce beta and gamma diversity as well as functional variability. This was experimentally addressed by examining the compositional and functional changes of 20 freshwater bacterial assemblages maintained at identical conditions over seven growth cycles for 34 days and subjected to two consecutive dispersal regimes. Initial dispersal limitation generated high beta diversity and led to the repeated emergence of community types that were dominated by particular taxa. Compositional stability and evenness of the community types varied over successive growth cycles, reflecting differences in functional properties. Carbon use efficiency increased during cultivation, with some communities of unique composition outperforming the replicate community types. Homogenizing dispersal led to high compositional similarity and reduced gamma diversity. While a neutral and a competition-based (Elo-rating) model together largely explained community assembly, a pseudomonad disproportionally dominated across communities, possibly due to interaction-related genomic traits. In conclusion, microbial assemblages stochastically generated by dispersal limitation can be gradually "refined" into distinct community types by subsequent deterministic processes. Segregation of communities represented an insurance mechanism for highly productive but competitively weak microbial taxa that were excluded during community coalescence. IMPORTANCE We experimentally assessed the compositional and functional responses of freshwater bacterial assemblages exposed to two consecutive dispersal-related events (dispersal limitation and homogenizing dispersal) under identical growth conditions. While segregation led to a decreased local diversity, high beta diversity sustained regional diversity and functional variability. In contrast, homogenizing dispersal reduced the species pool and functional variability of the metacommunity. Our findings highlight the role of dispersal in regulating both diversity and functional variability of aquatic microbial metacommunities, thereby providing crucial insight to predict changes in ecosystem functioning.
Collapse
Affiliation(s)
| | - Alizée Le Moigne
- Limnological Station, University of Zurich, Zurich, Switzerland
- Institut National de la Recherche Scientifique (INRS), Centre Eau, Terre et Environnement, Québec, Canada
| | | | | | | | | |
Collapse
|
3
|
Chen Z, Mao Y, Song Y, Dou M, Shang K, Yu Z, Ding K, Chen S. Refined egoist: The toxin-antitoxin immune system of T6SS. Microb Pathog 2024; 196:106991. [PMID: 39369755 DOI: 10.1016/j.micpath.2024.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Type VI secretory system (T6SS) is a key regulatory network in the bacterial system, which plays an important role in host-pathogen interactions and maintains cell homeostasis by regulating the release of effector proteins in specific competition. T6SS causes cell lysis or competitive inhibition by delivering effector molecules, such as toxic proteins and nucleic acids, directly from donor bacterial cells to eukaryotic or prokaryotic targets. Additionally, it orchestrates synthesis of immune effectors that counteract toxins thus preventing self-intoxication or antagonistic actions by competing microbes. Even so, the mechanism of toxin-antitoxin regulation in bacteria remains unclear. In response, this review discusses the bacterial T6SS's structure and function and the mechanism behind toxin-antitoxin secretion and the T6SS's expression in order to guide the further exploration of the pathogenic mechanism of the T6SS and the development of novel preparations for reducing and replacing toxins and antitoxins.
Collapse
Affiliation(s)
- Ziduo Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yikai Mao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yinzhou Song
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengxuan Dou
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
4
|
Ali MA, Ahmed T, Ibrahim E, Rizwan M, Chong KP, Yong JWH. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon 2024; 10:e31573. [PMID: 38841467 PMCID: PMC11152693 DOI: 10.1016/j.heliyon.2024.e31573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Ezzeldin Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khim Phin Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
5
|
Liao J, Yuan Z, Wang X, Chen T, Qian K, Cui Y, Rong A, Zheng C, Liu Y, Wang D, Pan L. Magnesium oxide nanoparticles reduce clubroot by regulating plant defense response and rhizosphere microbial community of tumorous stem mustard ( Brassica juncea var. tumida). Front Microbiol 2024; 15:1370427. [PMID: 38572228 PMCID: PMC10989686 DOI: 10.3389/fmicb.2024.1370427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a major disease that significantly impairs the yield of cruciferous crops and causes significant economic losses across the globe. The prevention of clubroot, especially in tumorous stem mustard (without resistant varieties), are is limited and primarily relies on fungicides. Engineered nanoparticles have opened up new avenues for the management of plant diseases, but there is no report on their application in the prevention of clubroot. The results showed that the control efficacy of 500 mg/L MgO NPs against clubroot was 54.92%. However, when the concentration was increased to 1,500 and 2,500 mg/L, there was no significant change in the control effect. Compared with CK, the average fresh and dry weight of the aerial part of plants treated with MgO NPs increased by 392.83 and 240.81%, respectively. Compared with the F1000 treatment, increases were observed in the content of soil available phosphorus (+16.72%), potassium (+9.82%), exchangeable magnesium (+24.20%), and water-soluble magnesium (+20.64%) in the 1,500 mg/L MgO NPs treatment. The enzyme-linked immune sorbent assay (ELISA) results showed that the application of MgO NPs significantly increased soil peroxidase (POD, +52.69%), alkaline protease (AP, +41.21%), alkaline phosphatase (ALP, +79.26%), urease (+52.69%), and sucrase (+56.88%) activities; And also increased plant L-phenylalanine ammonla-lyase (PAL, +70.49%), polyphenol oxidase (PPO, +36.77%), POD (+38.30%), guaiacol peroxidase (POX, +55.46%) activities and salicylic acid (SA, +59.86%) content. However, soil and plant catalase (CAT, -27.22 and - 19.89%, respectively), and plant super oxidase dismutase (SOD, -36.33%) activities were significantly decreased after the application of MgO NPs. The metagenomic sequencing analysis showed that the MgO NPs treatments significantly improved the α-diversity of the rhizosphere soil microbial community. The relative abundance of beneficial bacteria genera in the rhizosphere soil, including Pseudomonas, Sphingopyxis, Acidovorax, Variovorax, and Bosea, was significantly increased. Soil metabolic functions, such as oxidative phosphorylation (ko00190), carbon fixation pathways in prokaryotes (ko00720), indole alkaloid biosynthesis (ko00901), and biosynthesis of various antibiotics (ko00998) were significantly enriched. These results suggested that MgO NPs might control clubroot by promoting the transformation and utilization of soil nutrients, stimulating plant defense responses, and enriching soil beneficial bacteria.
Collapse
Affiliation(s)
- Jingjing Liao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiangmei Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Tingting Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuanyuan Cui
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Anping Rong
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Chunyang Zheng
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Yuanxiu Liu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Diandong Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Limei Pan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| |
Collapse
|