1
|
Duhamel S. The microbial phosphorus cycle in aquatic ecosystems. Nat Rev Microbiol 2025; 23:239-255. [PMID: 39528792 DOI: 10.1038/s41579-024-01119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus is an essential element for life, and phosphorus cycling is crucial to planetary habitability. In aquatic environments, microorganisms are a major component of phosphorus cycling and rapidly transform the diverse chemical forms of phosphorus through various uptake, assimilation and release pathways. Recent discoveries have revealed a more dynamic and complex aquatic microbial phosphorus cycle than previously understood. Some microorganisms have been shown to use and produce new phosphorus compounds, including those in reduced forms. New findings have also raised numerous unanswered questions that warrant further investigation. There is an expanding influence of human activity on aquatic ecosystems. Advancements in understanding the phosphorus biogeochemistry of evolving aquatic environments offer a unique opportunity to comprehend, anticipate and mitigate the effect of human activities. In this Review, I discuss the wealth of new aquatic phosphorus cycle research, spanning disciplines from omics and physiology to global biogeochemical modelling, with a focus on the current comprehension of how aquatic microorganisms sense, transport, assimilate, store, produce and release phosphorus. Of note, I delve into cellular phosphorus allocation, an underexplored topic with wide-ranging implications for energy and element flux in aquatic ecosystems.
Collapse
Affiliation(s)
- Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Waggoner EM, Djaoudi K, Diaz JM, Duhamel S. Dissolved organic phosphorus bond-class utilization by Synechococcus. FEMS Microbiol Ecol 2024; 100:fiae099. [PMID: 39003239 PMCID: PMC11319936 DOI: 10.1093/femsec/fiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024] Open
Abstract
Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus-carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5'-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5'-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus-carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5'-triphosphate, and lastly adenosine 5'-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains' exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5'-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.
Collapse
Affiliation(s)
- Emily M Waggoner
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Kahina Djaoudi
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Julia M Diaz
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, United States
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| |
Collapse
|
3
|
Torcello-Requena A, Murphy ARJ, Lidbury IDEA, Pitt FD, Stark R, Millard AD, Puxty RJ, Chen Y, Scanlan DJ. A distinct, high-affinity, alkaline phosphatase facilitates occupation of P-depleted environments by marine picocyanobacteria. Proc Natl Acad Sci U S A 2024; 121:e2312892121. [PMID: 38713622 PMCID: PMC11098088 DOI: 10.1073/pnas.2312892121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/06/2024] [Indexed: 05/09/2024] Open
Abstract
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.
Collapse
Affiliation(s)
| | - Andrew R. J. Murphy
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Ian D. E. A. Lidbury
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Frances D. Pitt
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Richard Stark
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Andrew D. Millard
- Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, LeicesterLE1 7RH, United Kingdom
| | - Richard J. Puxty
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Yin Chen
- School of Biosciences, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - David J. Scanlan
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| |
Collapse
|
4
|
Guo C, Li L, Lin S, Lin X. Species-dependent effects of seawater acidification on alkaline phosphatase activity in dinoflagellates. JOURNAL OF PHYCOLOGY 2023; 59:1347-1352. [PMID: 37844083 DOI: 10.1111/jpy.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/29/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Increases of atmospheric CO2 cause ocean acidification (OA) and global warming, the latter of which can stratify the water column and impede nutrient supply from deep water. Phosphorus (P) is an essential nutrient for phytoplankton to grow. While dissolved inorganic phosphorus (DIP) is the preferred form of P, phytoplankton have evolved alkaline phosphatase (AP) to utilize dissolved organic phosphorus (DOP) when DIP is deficient. Although the function of AP is known to require pH > 7, how OA affects AP activity and hence the capacity of phytoplankton to utilize DOP is poorly understood. Here, we examined the effects of pH conditions (5.5-11) on AP activity from six species of dinoflagellates, an important group of marine phytoplankton. We observed a general pattern that AP activity declined sharply at pH 5.5, peaked between pH 7 and 8, and dropped at pH > 8. However, our data revealed remarkable interspecific variations in optimal pH and niche breadth of pH. Among the species examined, Fugacium kawagutii and Prorocentrum cordatum had an optimal pH at 8, and Alexandrium pacificum, Amphidinium carterae, Effrenium voratum, and Karenia mikimotoi showed an optimal pH of 7. However, whereas A. pacificum and K. mikimotoi had the broadest pH niche for AP (7-10) and F. kawagutii the second (8-10), Am. carterae, E. voratum, and P. cordatum exhibited a narrow pH range. The response of Am. carterae AP to pH changes was verified using purified AP heterologously expressed in Escherichia coli. These results in concert suggest OA will likely differentially impact the capacity of different phytoplankton species to utilize DOP in the projected more acidified and nutrient-limited future ocean.
Collapse
Affiliation(s)
- Chentao Guo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, Fujian, China
- Provincial Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian Province, Xiamen, Fujian, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, Fujian, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Zhang K, Li J, Wang J, Lin X, Li L, You Y, Wu X, Zhou Z, Lin S. Functional differentiation and complementation of alkaline phosphatases and choreography of DOP scavenging in a marine diatom. Mol Ecol 2022; 31:3389-3399. [PMID: 35445467 DOI: 10.1111/mec.16475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
Facing phosphate deficiency, phytoplankton use alkaline phosphatase (AP) to scavenge dissolved organophosphate (DOP). AP is a multi-type (e.g. PhoA, PhoD) family of hydrolases and is known as a promiscuous enzyme with broad DOP substrate compatibility. Yet whether the multiple types differentiate on substrates and collaborate to provide physiological flexibility remain elusive. Here we identify PhoA and PhoDs and document the functional differentiation between PhoA and a PhoD (PhoD_45757) in Phaeodactylum tricornutum. CRISPR/Cas9-based mutations and physiological analyses reveal that 1) PhoA is a secreted enzyme and contributes the majority of total AP activity whereas PhoD_45757 is intracellular and contributes a minor fraction of the total AP activity; 2) AP gene expression compensates for each other after one is disrupted; 3) the DOP→PhoA→phosphate_uptake and the DOP_uptake→PhoD→phosphate pathways function interchangeably for some DOP substrates. These findings shed light on the underpinning of AP's multiformity and have important implications in phytoplankton phosphorus-nutrient niche differentiation, physiological plasticity, and competitive strategy.
Collapse
Affiliation(s)
- Kaidian Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.,Department of Marine Sciences, University of Connecticut, Groton, CT, USA.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Jiashun Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jierui Wang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanchun You
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaomei Wu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong, China.,Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
6
|
Wang J, Tang X, Mo Z, Mao Y. Metagenome-Assembled Genomes From Pyropia haitanensis Microbiome Provide Insights Into the Potential Metabolic Functions to the Seaweed. Front Microbiol 2022; 13:857901. [PMID: 35401438 PMCID: PMC8984609 DOI: 10.3389/fmicb.2022.857901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pyropia is an economically important edible red alga worldwide. The aquaculture industry and Pyropia production have grown considerably in recent decades. Microbial communities inhabit the algal surface and produce a variety of compounds that can influence host adaptation. Previous studies on the Pyropia microbiome were focused on the microbial components or the function of specific microbial lineages, which frequently exclude metabolic information and contained only a small fraction of the overall community. Here, we performed a genome-centric analysis to study the metabolic potential of the Pyropia haitanensis phycosphere bacteria. We reconstructed 202 unique metagenome-assembled genomes (MAGs) comprising all major taxa present within the P. haitanensis microbiome. The addition of MAGs to the genome tree containing all publicly available Pyropia-associated microorganisms increased the phylogenetic diversity by 50% within the bacteria. Metabolic reconstruction of the MAGs showed functional redundancy across taxa for pathways including nitrate reduction, taurine metabolism, organophosphorus, and 1-aminocyclopropane-1-carboxylate degradation, auxin, and vitamin B12 synthesis. Some microbial functions, such as auxin and vitamin B12 synthesis, that were previously assigned to a few Pyropia-associated microorganisms were distributed across the diverse epiphytic taxa. Other metabolic pathways, such as ammonia oxidation, denitrification, and sulfide oxidation, were confined to specific keystone taxa.
Collapse
Affiliation(s)
- Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
- Yazhou Bay Innovation Research Institute, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources of Hainan Province, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
7
|
Çelik SY, Ilhan H. Thermodynamic and Kinetic Parameters of Thermostable Alkaline Phosphatase from Geobacillus pallidus P26. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res Int 2020; 137:109715. [PMID: 33233287 DOI: 10.1016/j.foodres.2020.109715] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
With the improvement of living standards, growing consumer demand for high-quality and natural foods has led to the development of new mild processes to enhance or replace conventional thermal and chemical methods for food processing. Pulsed electric fields (PEF) is an emerging and promising non-thermal food processing technology, which is ongoing from laboratory and pilot plant level to the industrial level. Chinese researchers have made tremendous advances in the potential applications of PEF for processing a wide range of food commodities over the last few years, which contributes to the current understanding and development of PEF technology. The objective of this paper is to conduct a systematic review on the achievements of PEF technology used for food processing in China and the corresponding processing principles. Research on the applicability of PEF in food processing suggests that PEF can be used alone or in combination with other methods, not only to inactivate microorganisms and extract active constituents, but also to modify biomacromolecules, enhance chemical reactions and accelerate the aging of fermented foods, which are mainly related to permeabilization of biomembranes, occurrence of electrochemical and electrolytic reactions, polarization and realignment of molecules, and reduction of activation energy of chemical reactions induced by PEF treatments. In addition, some of the most important challenges for the successful implementation of large-scale industrial applications of PEF technology in the food industry are discussed. The results bring out the benefits of both researchers and the industry.
Collapse
|