1
|
Bennett AJ, Suski CD, O'Keefe JM. Molecular epidemiology of Eimeria spp. parasites and the faecal microbiome of Indiana bats ( Myotis sodalis): a non-invasive, multiplex metabarcode survey of an endangered species. Microb Genom 2025; 11. [PMID: 40009543 DOI: 10.1099/mgen.0.001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Assessing individual and population health in endangered wildlife poses unique challenges due to the lack of an adequate baseline and ethical constraints on invasive sampling. For endangered bats, minimally invasive samples like guano can often be the ethical and technical limit for studies of pathogens and the microbiome. In this study, we use multiplex metabarcode sequencing to describe the faecal microbiome and parasites of 56 Indiana bats (Myotis sodalis). We show evidence of a high prevalence of Eimeria spp. protozoan parasite and characterize associations between infection and changes to the faecal microbiome. We identify a strong and significant enrichment of Clostridium species in Eimeria-positive bats, including isolates related to Clostridium perfringens.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Cory D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Joy M O'Keefe
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
2
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
3
|
Bruto M, Oger PM, Got P, Bernard C, Melayah D, Cloarec LA, Duval C, Escalas A, Duperron S, Guigard L, Leboulanger C, Ader M, Sarazin G, Jézéquel D, Agogué H, Troussellier M, Hugoni M. Phytoplanktonic species in the haloalkaline Lake Dziani Dzaha select their archaeal microbiome. Mol Ecol 2023; 32:6824-6838. [PMID: 37901963 DOI: 10.1111/mec.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Microorganisms are key contributors of aquatic biogeochemical cycles but their microscale ecology remains largely unexplored, especially interactions occurring between phytoplankton and microorganisms in the phycosphere, that is the region immediately surrounding phytoplankton cells. The current study aimed to provide evidence of the phycosphere taking advantage of a unique hypersaline, hyperalkaline ecosystem, Lake Dziani Dzaha (Mayotte), where two phytoplanktonic species permanently co-dominate: a cyanobacterium, Arthrospira fusiformis, and a green microalga, Picocystis salinarum. To assay phycospheric microbial diversity from in situ sampling, we set up a flow cytometry cell-sorting methodology for both phytoplanktonic populations, coupled with metabarcoding and comparative microbiome diversity. We focused on archaeal communities as they represent a non-negligible part of the phycospheric diversity, however their role is poorly understood. This work is the first which successfully explores in situ archaeal diversity distribution showing contrasted phycospheric compositions, with P. salinarum phycosphere notably enriched in Woesearchaeales OTUs while A. fusiformis phycosphere was enriched in methanogenic lineages affiliated OTUs such as Methanomicrobiales or Methanofastidiosales. Most archaeal OTUs, including Woesearchaeales considered in literature as symbionts, were either ubiquitous or specific of the free-living microbiome (i.e. present in the 3-0.2 μm fraction). Seminally, several archaeal OTUs were enriched from the free-living microbiome to the phytoplankton phycospheres, suggesting (i) either the inhibition or decrease of other OTUs, or (ii) the selection of specific OTUs resulting from the physical influence of phytoplanktonic species on surrounding Archaea.
Collapse
Affiliation(s)
- Maxime Bruto
- VetAgro Sup, Anses, UMR Mycoplasmoses Animales, Marcy l'Etoile, France
| | - Philippe M Oger
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Patrice Got
- MARBEC, Univ Montpellier, IRD, CNRS, Ifremer, Sète, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Delphine Melayah
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Lilian A Cloarec
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Charlotte Duval
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Arthur Escalas
- MARBEC, Univ Montpellier, IRD, CNRS, Ifremer, Sète, France
| | - Sébastien Duperron
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Ludivine Guigard
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | | | - Magali Ader
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
| | - Gerard Sarazin
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
| | - Didier Jézéquel
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
- UMR CARRTEL, INRAE-USMB, Thonon, France
| | - Hélène Agogué
- LIENSs, UMR7266, La Rochelle Université - CNRS, La Rochelle, France
| | | | - Mylène Hugoni
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Liu X, Ma Y, Wu J, Wang P, Wang Y, Wang A, Yin Q, Ma H, Chan LL, Wu B. Characterizing the Influence of a Heterotrophic Bicosoecid Flagellate Pseudobodo sp. on the Dinoflagellate Gambierdiscus balechii. Toxins (Basel) 2023; 15:657. [PMID: 37999520 PMCID: PMC10674679 DOI: 10.3390/toxins15110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Microbial interactions including competition, mutualism, commensalism, parasitism, and predation, which can be triggered by nutrient acquisition and chemical communication, are universal phenomena in the marine ecosystem. The interactions may influence the microbial population density, metabolism, and even their environmental functions. Herein, we investigated the interaction between a heterotrophic bicosoecid flagellate, Pseudobodo sp. (Bicoecea), and a dinoflagellate, Gambierdiscus balechii (Dinophyceae), which is a well-known ciguatera food poisoning (CFP) culprit. The presence of Pseudobodo sp. inhibited the algal proliferation and decreased the cardiotoxicity of zebrafish in the algal extract exposure experiment. Moreover, a significant difference in microbiome abundance was observed in algal cultures with and without Pseudobodo sp. Chemical analysis targeting toxins was performed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with molecular networking (MN), showing a significant alteration in the cellular production of gambierone analogs and some super-carbon chain compounds. Taken together, our results demonstrated the impact of heterotrophic flagellate on the photosynthetic dinoflagellates, revealing the complex dynamics of algal toxin production and the ecological relationships related to dinoflagellates in the marine environment.
Collapse
Affiliation(s)
- Xiaowan Liu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; (X.L.); (J.W.); (H.M.)
| | - Yihan Ma
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; (X.L.); (J.W.); (H.M.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Yinuo Wang
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| | - Anli Wang
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| | - Qizhao Yin
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| | - Haiying Ma
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; (X.L.); (J.W.); (H.M.)
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; (X.L.); (J.W.); (H.M.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan 321000, China; (Y.M.); (Y.W.); (A.W.); (Q.Y.)
| |
Collapse
|
5
|
Abstract
Ever since its discovery, the double-stranded DNA contained in the mitochondria of eukaryotes has fascinated researchers because of its bacterial endosymbiotic origin, crucial role in encoding subunits of the respiratory complexes, compact nature, and specific inheritance mechanisms. In the last few years, high-throughput sequencing techniques have accelerated the sequencing of mitochondrial genomes (mitogenomes) and uncovered the great diversity of organizations, gene contents, and modes of replication and transcription found in living eukaryotes. Some early divergent lineages of unicellular eukaryotes retain certain synteny and gene content resembling those observed in the genomes of alphaproteobacteria (the inferred closest living group of mitochondria), whereas others adapted to anaerobic environments have drastically reduced or even lost the mitogenome. In the three main multicellular lineages of eukaryotes, mitogenomes have pursued diverse evolutionary trajectories in which different types of molecules (circular versus linear and single versus multipartite), gene structures (with or without self-splicing introns), gene contents, gene orders, genetic codes, and transfer RNA editing mechanisms have been selected. Whereas animals have evolved a rather compact mitochondrial genome between 11 and 50 Kb in length with a highly conserved gene content in bilaterians, plants exhibit large mitochondrial genomes of 66 Kb to 11.3 Mb with large intergenic repetitions prone to recombination, and fungal mitogenomes have intermediate sizes of 12 to 236 Kb.
Collapse
Affiliation(s)
- Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|