1
|
Malik Y, Ali I, Sajjad A, Jing L, Iqbal I, Rehman AU, Azam T, Chen X. Bacterial Diversity at Himalayan Pink Salt Extraction Site. BIOLOGY 2025; 14:316. [PMID: 40136572 PMCID: PMC11939872 DOI: 10.3390/biology14030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Table salt, or sodium chloride, is extensively utilized in the culinary business as a flavoring agent, texture garnishing [...].
Collapse
Affiliation(s)
- Yasmeen Malik
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.M.); (I.I.); (T.A.)
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan;
- Mines and Minerals Development Department, Government of Balochistan, Quetta 87300, Pakistan;
| | - Imran Ali
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.M.); (I.I.); (T.A.)
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan;
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54600, Pakistan
| | - Ashif Sajjad
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan;
| | - Luhuai Jing
- College of Life Sciences, Sichuan University, Chengdu 610064, China;
| | - Irfana Iqbal
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.M.); (I.I.); (T.A.)
| | - Atiq ur Rehman
- Mines and Minerals Development Department, Government of Balochistan, Quetta 87300, Pakistan;
| | - Toquier Azam
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.M.); (I.I.); (T.A.)
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.M.); (I.I.); (T.A.)
| |
Collapse
|
2
|
Butturini A, Benaiges-Fernandez R, Fors O, García-Castellanos D. Potential Habitability of Present-Day Martian Subsurface for Earth-Like Methanogens. ASTROBIOLOGY 2025; 25:253-268. [PMID: 40047175 DOI: 10.1089/ast.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The intense debate about the presence of methane in the martian atmosphere has stimulated the study of methanogenic species that are adapted to terrestrial habitats that resemble martian environments. We examined the environmental conditions, energy sources, and ecology of terrestrial methanogens that thrive in deep crystalline fractures, subsea hypersaline lakes, and subglacial water bodies, considered analogs of a hypothetical habitable martian subsurface. We combined this information with recent data on the distribution of buried water/ice and radiogenic elements on Mars, and with models of the subsurface thermal regime of this planet, we identified a 4.3-8.8 km-deep regolith habitat at the midlatitude location of Acidalia Planitia that might fit the requirements for hosting putative martian methanogens analogous to the methanogenic families, Methanosarcinaceae and Methanomicrobiaceae.
Collapse
Affiliation(s)
- A Butturini
- Departament de Biologia Evolutiva, Ecologia y Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - R Benaiges-Fernandez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - O Fors
- Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Spain
| | - D García-Castellanos
- Geosciences Barcelona (GEO3BCN), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
3
|
Forte E, Santin I, Azzaro M, Battistel D, Guglielmin M. Evidence of brines interconnections and different flow patterns within the boulder clay glacier and its moraine (Victoria Land, East Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177469. [PMID: 39547386 DOI: 10.1016/j.scitotenv.2024.177469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Multi-technique integrated surveys were carried out to investigate brine characteristics, connectivity and flow patterns in the Boulder Clay Glacier area, Victoria Land, East Antarctica. Specifically, electromagnetic geophysical surveys focused mainly on Ground Penetrating Radar (GPR) and integrated by Frequency Domain induction, not only demonstrated the presence of brines in the subsurface, but also allowed to image several structures and glaciological elements. Chemical analyses suggested the origin and differentiation of the brines, providing evidence for interconnected pathways. To the best of our knowledge, this is the first time that brines interconnection and their chemical common footprint is demonstrated below a glacier and its moraine at shallow depth, combining boreholes, geophysical, geomorphological, and chemical data. This demonstrates that liquid flows can occur at very shallow depths, even in continental Antarctica, and that pressurised brines can flow beneath and through glaciers and moraines.
Collapse
Affiliation(s)
- Emanuele Forte
- Department of Mathematics, Informatics, and Geosciences, University of Trieste, via Weiss, 2, 34128 Trieste, Italy
| | - Ilaria Santin
- Department of Mathematics, Informatics, and Geosciences, University of Trieste, via Weiss, 2, 34128 Trieste, Italy; Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH, Zurich, Zurich, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), 98122 Messina, Italy
| | - Dario Battistel
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino, 155, 30172 Mestre, VE, Italy
| | - Mauro Guglielmin
- Department of Theoretical and Applied Sciences, Insubria University, via Dunant, 3, 21100 Varese, Italy; Climate Change Research Center, Insubria University, Via San Abbondio, 22100 Como, Italy.
| |
Collapse
|
4
|
Magnuson E, Altshuler I, Freyria NJ, Leveille RJ, Whyte LG. Sulfur-cycling chemolithoautotrophic microbial community dominates a cold, anoxic, hypersaline Arctic spring. MICROBIOME 2023; 11:203. [PMID: 37697305 PMCID: PMC10494364 DOI: 10.1186/s40168-023-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Gypsum Hill Spring, located in Nunavut in the Canadian High Arctic, is a rare example of a cold saline spring arising through thick permafrost. It perennially discharges cold (~ 7 °C), hypersaline (7-8% salinity), anoxic (~ 0.04 ppm O2), and highly reducing (~ - 430 mV) brines rich in sulfate (2.2 g.L-1) and sulfide (9.5 ppm), making Gypsum Hill an analog to putative sulfate-rich briny habitats on extraterrestrial bodies such as Mars. RESULTS Genome-resolved metagenomics and metatranscriptomics were utilized to describe an active microbial community containing novel metagenome-assembled genomes and dominated by sulfur-cycling Desulfobacterota and Gammaproteobacteria. Sulfate reduction was dominated by hydrogen-oxidizing chemolithoautotrophic Desulfovibrionaceae sp. and was identified in phyla not typically associated with sulfate reduction in novel lineages of Spirochaetota and Bacteroidota. Highly abundant and active sulfur-reducing Desulfuromusa sp. highly transcribed non-coding RNAs associated with transcriptional regulation, showing potential evidence of putative metabolic flexibility in response to substrate availability. Despite low oxygen availability, sulfide oxidation was primarily attributed to aerobic chemolithoautotrophic Halothiobacillaceae. Low abundance and transcription of photoautotrophs indicated sulfur-based chemolithoautotrophy drives primary productivity even during periods of constant illumination. CONCLUSIONS We identified a rare surficial chemolithoautotrophic, sulfur-cycling microbial community active in a unique anoxic, cold, hypersaline Arctic spring. We detected Mars-relevant metabolisms including hydrogenotrophic sulfate reduction, sulfur reduction, and sulfide oxidation, which indicate the potential for microbial life in analogous S-rich brines on past and present Mars. Video Abstract.
Collapse
Affiliation(s)
- Elisse Magnuson
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Ianina Altshuler
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nastasia J. Freyria
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Richard J. Leveille
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC Canada
- Geosciences Department, John Abbott College, Ste-Anne-de-Bellevue, QC Canada
| | - Lyle G. Whyte
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| |
Collapse
|
5
|
Guglielmin M, Azzaro M, Buzzini P, Battistel D, Roman M, Ponti S, Turchetti B, Sannino C, Borruso L, Papale M, Lo Giudice A. A possible unique ecosystem in the endoglacial hypersaline brines in Antarctica. Sci Rep 2023; 13:177. [PMID: 36604573 PMCID: PMC9814585 DOI: 10.1038/s41598-022-27219-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Here, we present the results related to a new unique terrestrial ecosystem found in an englacial hypersaline brine found in Northern Victoria Land (Antarctica). Both the geochemistry and microbial (prokaryotic and fungal) diversity revealed an unicity with respect to all the other known Antarctic brines and suggested a probable ancient origin mainly due a progressive cryoconcentration of seawater. The prokaryotic community presented some peculiarities, such as the occurrence of sequences of Patescibacteria (which can thrive in nutrient-limited water environments) or few Spirochaeta, and the presence of archaeal sequences of Methanomicrobia closely related to Methanoculleus, a methanogen commonly detected in marine and estuarine environments. The high percentage (35%) of unassigned fungal taxa suggested the presence of a high degree of undiscovered diversity within a structured fungal community (including both yeast and filamentous life forms) and reinforce the hypothesis of a high degree of biological uniqueness of the habitat under study.
Collapse
Affiliation(s)
- M. Guglielmin
- grid.18147.3b0000000121724807Department of Theoretical and Applied Sciences, Insubria University, Via Dunant, 3, 21100 Varese, Italy ,grid.18147.3b0000000121724807Climate Change Research Center, Insubria University, Via Regina Teodolinda, 37, 22100 Como, Italy
| | - M. Azzaro
- grid.5326.20000 0001 1940 4177Institute of Polar Sciences, National Research Council, Spianata S. Raineri. 86, 98122 Messina, Italy
| | - P. Buzzini
- grid.9027.c0000 0004 1757 3630Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - D. Battistel
- grid.5326.20000 0001 1940 4177Institute of Polar Sciences, National Research Council, Spianata S. Raineri. 86, 98122 Messina, Italy ,grid.7240.10000 0004 1763 0578Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino, 155, 30172 Mestre, VE Italy
| | - M. Roman
- grid.7240.10000 0004 1763 0578Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino, 155, 30172 Mestre, VE Italy
| | - S. Ponti
- grid.18147.3b0000000121724807Department of Theoretical and Applied Sciences, Insubria University, Via Dunant, 3, 21100 Varese, Italy
| | - B. Turchetti
- grid.9027.c0000 0004 1757 3630Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - C. Sannino
- grid.9027.c0000 0004 1757 3630Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - L. Borruso
- grid.34988.3e0000 0001 1482 2038Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 9100 Bozen-Bolzano, Italy
| | - M. Papale
- grid.5326.20000 0001 1940 4177Institute of Polar Sciences, National Research Council, Spianata S. Raineri. 86, 98122 Messina, Italy
| | - A. Lo Giudice
- grid.5326.20000 0001 1940 4177Institute of Polar Sciences, National Research Council, Spianata S. Raineri. 86, 98122 Messina, Italy
| |
Collapse
|
6
|
Antarctic Salt-Cones: An Oasis of Microbial Life? The Example of Boulder Clay Glacier (Northern Victoria Land). Microorganisms 2022; 10:microorganisms10091753. [PMID: 36144355 PMCID: PMC9504174 DOI: 10.3390/microorganisms10091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 12/04/2022] Open
Abstract
The evaporation of a localized, highly saline water body of the Boulder Clay debris-covered glacier, in the Northern Victoria Land, probably generated the accumulation of mirabilite (Na2SO4 × 10H2O) and thenardite (Na2SO4) in a glacier salt-cone. Such an extremely cold and salty environment resembles the conditions on Mars, so it can be considered a terrestrial analog. The study was aimed at gaining a first glimpse at the prokaryotic community associated with Antarctic mirabilite and thenardite minerals and also to find clues about the origin of the salts. For this purpose, samples were analyzed by a next generation approach to investigate the prokaryotic (Bacteria and Archaea) diversity. Phylogenetic analysis allowed the identification of Bacteroidota, Actinobacteriota, Firmicutes, and Gammaproteobacteria as the main bacterial lineages, in addition to Archaea in the phylum Halobacterota. The genera Arthrobacter, Rhodoglobus, Gillisia, Marinobacter and Psychrobacter were particularly abundant. Interestingly, several bacterial and archaeal sequences were related to halotolerant and halophilic genera, previously reported in a variety of marine environments and saline habitats, also in Antarctica. The analyzed salt community also included members that are believed to play a major role in the sulfur cycle.
Collapse
|
7
|
Akulava V, Miamin U, Akhremchuk K, Valentovich L, Dolgikh A, Shapaval V. Isolation, Physiological Characterization, and Antibiotic Susceptibility Testing of Fast-Growing Bacteria from the Sea-Affected Temporary Meltwater Ponds in the Thala Hills Oasis (Enderby Land, East Antarctica). BIOLOGY 2022; 11:biology11081143. [PMID: 36009770 PMCID: PMC9404859 DOI: 10.3390/biology11081143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary The characterization of microbial communities from Antarctic temporary meltwater ponds is limited, while they could serve as a source of biotechnologically interesting microorganisms. In this study, we characterized a set of bacteria isolated from the sea-affected temporary meltwater ponds in the East Antarctica area of the Vecherny region of the Thala Hills Oasis, Enderby Land. The isolated meltwater bacteria were identified as Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, where Proteobacteria and Actinobacteria were predominant. The isolated bacteria were able to grow in a relatively wide temperature range between 4 °C and 37 °C, with an optimal temperature range of 18–25 °C. Further, most of the isolates showed an ability to secrete lipases and proteases, and several of them were pigmented. Bacterial isolates from the genera Pseudomonas and Acinetobacter exhibited multi-resistance against β-lactams, sulfonamide, macrolide, diaminopyrimidines, and chloramphenicol antibiotics. This study shows that bacterial communities from the temporary meltwater ponds in East Antarctica consist of metabolically versatile bacteria that might be defined by their location near the sea and the close presence of animals, penguins and skuas in particular. Abstract In this study, for the first time, we report the identification and characterization of culturable fast-growing bacteria isolated from the sea-affected temporary meltwater ponds (MPs) in the East Antarctica area of the Vecherny region (−67.656317, 46.175058) of the Thala Hills Oasis, Enderby Land. Water samples from the studied MPs showed alkaline pH (from 8.0 to 10.1) and highly varied total dissolved solids (86–94,000 mg/L). In total, twenty-nine bacterial isolates were retrieved from the studied MPs. The phylogenetic analysis based on 16S rRNA gene sequence similarities showed that the isolated bacteria belong to the phyla Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes and the twelve genera Pseudomonas, Shewanella, Acinetobacter, Sporosarcina, Facklamia, Carnobacterium, Arthrobacter, Brachybacterium, Micrococcus, Agrococcus, Leifsonia, and Flavobacterium. Most of the isolated bacteria were psychrotrophs and showed the production of one or more extracellular enzymes. Lipolytic and proteolytic activities were more prevalent among the isolates. Five isolates from the Actinobacteria phylum and one isolate from the Bacteroidetes phylum had strong pigmentation. Antibiotic susceptibility testing revealed that most of the isolates are resistant to at least one antibiotic, and seven isolates showed multi-resistance.
Collapse
Affiliation(s)
- Volha Akulava
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway;
- Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus; (U.M.); (L.V.)
- Correspondence:
| | - Uladzislau Miamin
- Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus; (U.M.); (L.V.)
- Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources, 220072 Minsk, Belarus
| | - Katsiaryna Akhremchuk
- Institute of Microbiology, National Academy of Sciences of Belarus, 220141 Minsk, Belarus;
| | - Leonid Valentovich
- Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus; (U.M.); (L.V.)
- Institute of Microbiology, National Academy of Sciences of Belarus, 220141 Minsk, Belarus;
| | - Andrey Dolgikh
- Institute of Geography, Russian Academy of Sciences, 119017 Moscow, Russia;
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway;
| |
Collapse
|
8
|
Weingarten EA, Zee PC, Jackson CR. Microbial Communities in Saltpan Sediments Show Tolerance to Mars Analog Conditions, but Susceptibility to Chloride and Perchlorate Toxicity. ASTROBIOLOGY 2022; 22:838-850. [PMID: 35731161 PMCID: PMC9464085 DOI: 10.1089/ast.2021.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Brines at or near the surface of present-day Mars are a potential explanation for seasonally recurring dark streaks on the walls of craters, termed recurring slope lineae (RSL). Deliquescence and freezing point depression are possible drivers of brine stability, attributable to the high salinity observed in martian regolith including chlorides and perchlorates. Investigation of life, which may inhabit RSL, and the cellular mechanisms necessary for survival, must consider the tolerance of highly variable hydration, freeze-thaw cycles, and high osmolarity in addition to the anaerobic, oligotrophic, and irradiated environment. We propose the saltpan, an ephemeral, hypersaline wetland as an analogue for putative RSL hydrology. Saltpan sediment archaeal and bacterial communities showed tolerance of the Mars-analogous atmosphere, hydration, minerology, salinity, and temperature. Although active growth and a shift to well-adapted taxa were observed, susceptibility to low-concentration chloride and perchlorate addition suggested that such a composition was insufficient for beneficial water retention relative to added salt stress.
Collapse
Affiliation(s)
- Eric A. Weingarten
- Department of Biology, University of Mississippi, University, Mississippi, USA
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Peter C. Zee
- Department of Biology, University of Mississippi, University, Mississippi, USA
| | - Colin R. Jackson
- Department of Biology, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
9
|
Benthic Microbial Communities in a Seasonally Ice-Covered Sub-Arctic River (Pasvik River, Norway) Are Shaped by Site-Specific Environmental Conditions. Microorganisms 2022; 10:microorganisms10051022. [PMID: 35630464 PMCID: PMC9147904 DOI: 10.3390/microorganisms10051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
The Pasvik River experiences chemical, physical, and biological stressors due to the direct discharges of domestic sewage from settlements located within the catchment and runoff from smelter and mine wastes. Sediments, as a natural repository of organic matter and associated contaminants, are of global concern for the possible release of pollutants in the water column, with detrimental effects on aquatic organisms. The present study was aimed at characterizing the riverine benthic microbial community and evaluating its ecological role in relation to the contamination level. Sediments were sampled along the river during two contrasting environmental periods (i.e., beginning and ongoing phases of ice melting). Microbial enzymatic activities, cell abundance, and morphological traits were evaluated, along with the phylogenetic community composition. Amplified 16S rRNA genes from bacteria were sequenced using a next-generation approach. Sediments were also analyzed for a variety of chemical features, namely particulate material characteristics and concentration of polychlorobiphenyls, polycyclic aromatic hydrocarbons, and pesticides. Riverine and brackish sites did not affect the microbial community in terms of main phylogenetic diversity (at phylum level), morphometry, enzymatic activities, and abundance. Instead, bacterial diversity in the river sediments appeared to be influenced by the micro-niche conditions, with differences in the relative abundance of selected taxa. In particular, our results highlighted the occurrence of bacterial taxa directly involved in the C, Fe, and N cycles, as well as in the degradation of organic pollutants and toxic compounds.
Collapse
|
10
|
Life from a Snowflake: Diversity and Adaptation of Cold-Loving Bacteria among Ice Crystals. CRYSTALS 2022. [DOI: 10.3390/cryst12030312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Incredible as it is, researchers have now the awareness that even the most extreme environment includes special habitats that host several forms of life. Cold environments cover different compartments of the cryosphere, as sea and freshwater ice, glaciers, snow, and permafrost. Although these are very particular environmental compartments in which various stressors coexist (i.e., freeze–thaw cycles, scarce water availability, irradiance conditions, and poorness of nutrients), diverse specialized microbial communities are harbored. This raises many intriguing questions, many of which are still unresolved. For instance, a challenging focus is to understand if microorganisms survive trapped frozen among ice crystals for long periods of time or if they indeed remain metabolically active. Likewise, a look at their site-specific diversity and at their putative geochemical activity is demanded, as well as at the equally interesting microbial activity at subzero temperatures. The production of special molecules such as strategy of adaptations, cryoprotectants, and ice crystal-controlling molecules is even more intriguing. This paper aims at reviewing all these aspects with the intent of providing a thorough overview of the main contributors in investigating the microbial life in the cryosphere, touching on the themes of diversity, adaptation, and metabolic potential.
Collapse
|
11
|
Antarctica as a reservoir of planetary analogue environments. Extremophiles 2021; 25:437-458. [PMID: 34586500 DOI: 10.1007/s00792-021-01245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
One of the main objectives of astrobiological research is the investigation of the habitability of other planetary bodies. Since space exploration missions are expensive and require long-term organization, the preliminary study of terrestrial environments is an essential step to prepare and support exploration missions. The Earth hosts a multitude of extreme environments whose characteristics resemble celestial bodies in our Solar System. In these environments, the physico-chemical properties partly match extraterrestrial environments and could clarify limits and adaptation mechanisms of life, the mineralogical or geochemical context, and support and interpret data sent back from planetary bodies. One of the best terrestrial analogues is Antarctica, whose conditions lie on the edge of habitability. It is characterized by a cold and dry climate (Onofri et al., Nova Hedwigia 68:175-182, 1999), low water availability, strong katabatic winds, salt concentration, desiccation, and high radiation. Thanks to the harsh conditions like those in other celestial bodies, Antarctica offers good terrestrial analogues for celestial body (Mars or icy moons; Léveillé, CR Palevol 8:637-648, https://doi.org/10.1016/j.crpv.2009.03.005 , 2009). The continent could be distinguished into several habitats, each with characteristics similar to those existing on other bodies. Here, we reported a description of each simulated parameter within the habitats, in relation to each of the simulated extraterrestrial environments.
Collapse
|
12
|
First Insights into the Microbiology of Three Antarctic Briny Systems of the Northern Victoria Land. DIVERSITY 2021. [DOI: 10.3390/d13070323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different polar environments (lakes and glaciers), also in Antarctica, encapsulate brine pools characterized by a unique combination of extreme conditions, mainly in terms of high salinity and low temperature. Since 2014, we have been focusing our attention on the microbiology of brine pockets from three lakes in the Northern Victoria Land (NVL), lying in the Tarn Flat (TF) and Boulder Clay (BC) areas. The microbial communities have been analyzed for community structure by next generation sequencing, extracellular enzyme activities, metabolic potentials, and microbial abundances. In this study, we aim at reconsidering all available data to analyze the influence exerted by environmental parameters on the community composition and activities. Additionally, the prediction of metabolic functions was attempted by the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) tool, highlighting that prokaryotic communities were presumably involved in methane metabolism, aromatic compound biodegradation, and organic compound (proteins, polysaccharides, and phosphates) decomposition. The analyzed cryoenvironments were different in terms of prokaryotic diversity, abundance, and retrieved metabolic pathways. By the analysis of DNA sequences, common operational taxonomic units ranged from 2.2% to 22.0%. The bacterial community was dominated by Bacteroidetes. In both BC and TF brines, sequences of the most thermally tolerant and methanogenic Archaea were detected, some of them related to hyperthermophiles.
Collapse
|
13
|
Lo Giudice A, Conte A, Papale M, Rizzo C, Azzaro M, Guglielmin M. Prokaryotic Diversity and Metabolically Active Communities in Brines from Two Perennially Ice-Covered Antarctic Lakes. ASTROBIOLOGY 2021; 21:551-565. [PMID: 33524277 DOI: 10.1089/ast.2020.2238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The genomic diversity of bacteria and archaea in brines (BC1, BC2, and BC3) from two adjacent and perennially frozen Antarctic lakes (L16 and L-2) in the Boulder Clay (BC) area was investigated together with the metabolically active fraction of both communities, by analyzing the bulk rRNA as a general marker of metabolic activity. Although similar bacterial and archaeal assemblages were observed at phylum level, differences were encountered when considering the distribution in species. Overall, the total bacterial communities were dominated by Bacteroidetes. A massive occurrence of flavobacterial sequences was observed within the metabolically active bacterial communities of the BC1 brine, whereas the active fractions in BC2 and BC3 strongly differed from the bulk communities being dominated by Betaproteobacteria (mainly Hydrogenophaga members). The BC lakes also hosted sequences of the most thermally tolerant archaea, also related to well-known hyperthermophiles. Interestingly, RNA sequences of the hyperthermophilic genus Ferroglobus were retrieved in all brine samples. Finally, a high abundance of the strictly anaerobic methanogens (such as Methanosarcina members) within the active community suggests that anoxic conditions might occur in the lake brines. Our findings indicate perennially ice-covered Antarctic lakes as plausible terrestrial candidates for the study of the potential for extant life on different bodies of our solar system.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (ISP-CNR), Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Conte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Papale
- Institute of Polar Sciences, National Research Council (ISP-CNR), Messina, Italy
| | - Carmen Rizzo
- Department BIOTECH, Stazione Zoologica Anton Dohrn, National Institute of Biology, Messina, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Messina, Italy
| | - Mauro Guglielmin
- Dipartimento di Scienze Teoriche e Applicate, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Rizzo C, Conte A, Azzaro M, Papale M, Rappazzo AC, Battistel D, Roman M, Lo Giudice A, Guglielmin M. Cultivable Bacterial Communities in Brines from Perennially Ice-Covered and Pristine Antarctic Lakes: Ecological and Biotechnological Implications. Microorganisms 2020; 8:E819. [PMID: 32486118 PMCID: PMC7355736 DOI: 10.3390/microorganisms8060819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
The diversity and biotechnological potentialities of bacterial isolates from brines of three Antarctic lakes of the Northern Victoria Land (namely Boulder Clay and Tarn Flat areas) were first explored. Cultivable bacterial communities were analysed mainly in terms of bacterial response to contaminants (i.e., antibiotics and heavy metals) and oxidation of contaminants (i.e., aliphatic and aromatic hydrocarbons and polychlorobiphenyls). Moreover, the biosynthesis of biomolecules (antibiotics, extracellular polymeric substances and enzymes) with applications for human health and environmental protection was assayed. A total of 74 and 141 isolates were retrieved from Boulder Clay and Tarn Flat brines, respectively. Based on 16S rRNA gene sequence similarities, bacterial isolates represented three phyla, namely Proteobacteria (i.e., Gamma- and Alphaproteobacteria), Bacteroidetes and Actinobacteria, with differences encountered among brines. At genus level, Rhodobacter, Pseudomonas, Psychrobacter and Leifsonia members were dominant. Results obtained from this study on the physiological and enzymatic features of cold-adapted isolates from Antarctic lake brines provide interesting prospects for possible applications in the biotechnological field through future targeted surveys. Finally, findings on contaminant occurrence and bacterial response suggest that bacteria might be used as bioindicators for tracking human footprints in these remote polar areas.
Collapse
Affiliation(s)
- Carmen Rizzo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, National Institute of Biology, Villa Pace, 98167 Messina, Italy;
| | - Antonella Conte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy; (M.A.); (M.P.); (A.C.R.)
| | - Maria Papale
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy; (M.A.); (M.P.); (A.C.R.)
| | - Alessandro C. Rappazzo
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy; (M.A.); (M.P.); (A.C.R.)
| | - Dario Battistel
- Dipartimento di Scienze Ambientali, Informatica e Statistica, University Ca’ Foscari, 30123 Venezia, Italy; (D.B.); (M.R.)
| | - Marco Roman
- Dipartimento di Scienze Ambientali, Informatica e Statistica, University Ca’ Foscari, 30123 Venezia, Italy; (D.B.); (M.R.)
| | - Angelina Lo Giudice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy; (M.A.); (M.P.); (A.C.R.)
| | - Mauro Guglielmin
- Dipartimento di Scienze Teoriche e Applicate, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|