1
|
Avesani M, Zapparoli G. New records of fungi in oleic ecosystems through analyzing olive oil, paste, and pomace from an olive oil production area in northern Italy. J Appl Microbiol 2025; 136:lxaf092. [PMID: 40240301 DOI: 10.1093/jambio/lxaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025]
Abstract
AIMS This study analyzed the fungal diversity in oleic ecosystems adopting a culture-based approach. METHODS AND RESULTS In all, 66 yeasts and 10 filamentous fungi were isolated from samples of olive oil, paste, and pomace collected in a small area of olive oil production in northern Italy. Twenty-three and 7 taxa of yeasts and filamentous fungi were identified with molecular method, respectively. Most yeasts belonged to species commonly occurring in oleic. Conversely, other isolates belonged to species rarely or never found in olive oil and by-products. Filamentous fungal species were recorded for the first time on olive oil. The isolates were tested for β-glucosidase and esterase/lipase activity to evaluate their potential effects on the chemical and sensory properties of olive oil. Significant variations of these activities were observed among isolates. CONCLUSIONS Olive oil and its by-products can harbor significant variability among fungal species having enzymatic activities with potential impact on olive oil quality. The presence of basidiomycetous yeasts and filamentous fungi in stored oil requires further investigation.
Collapse
Affiliation(s)
- Michele Avesani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giacomo Zapparoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
2
|
Giavalisco M, Zotta T, Parente E, Siesto G, Capece A, Ricciardi A. Effect of oil-born yeasts on the quality of extra-virgin olive oils of Basilicata region. Int J Food Microbiol 2023; 386:110041. [PMID: 36495820 DOI: 10.1016/j.ijfoodmicro.2022.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
The olive oil microbiota mainly consists of yeasts, which may positively or negatively affect the physicochemical and sensory features of product. In this study, 17 yeast strains belonging to Candida boidinii, Lachancea fermentati, Nakazawaea molendinolei, N. wickerhamii and Schwanniomyces polymorphus species were collected during olive oil production, identified and tested for the ability to ferment sugars, to grow at low temperatures, for the occurrence of different enzymatic activities, for the tolerance and degradation of phenolic compounds, radical scavenging activities, biofilm formation, survival to simulated gastro-intestinal (GIT) tract. Yeasts were also inoculated in extra virgin olive oils (EVOO; from Leccino and Coratina cultivar) to evaluate their survival and their effect on EVOO quality (changes in analytical indices) during 6-months of storage. Most of strains were able to grow at 15°C, while the ability to ferment different sugars was strain-specific. All strains had β-glucosidase activity, while none exhibited lipolytic activity; peroxidase was widespread among the strains, while protease activity was strain-dependent. Esterase and the ability to hydrolyse oleuropein and form hydroxytyrosol was present only in N. wickerhamii strains. All strains were able to survive in olive mill wastewater, used as a model of phenolic compounds-rich matrix. A potential biofilm formation was observed only in N. wickerhamii, while the ability to scavenge radical and to cope with GIT-associated stresses were strain-dependent. High levels of survival were observed for almost strains (except S. polymorphus), in both Leccino and Coratina samples. Yeasts limited the acidity rise in olive oils, but overtime they contributed to increase the parameters related to oxidative phenomena (i.e. peroxides, K232, K270), resulting in a declassification of EVOOs. The total phenolic content (TPC) was correlated to the presence of yeasts and, at the end of storage period (6 months) inoculated samples had significantly lower concentrations compared to the control oils. This study confirms that yeasts are able to survive in olive oils and, therefore, the control of their occurrence during extraction process and storage conditions is needed to obtain high-quality products and to maintain the standards of EVOO classification.
Collapse
Affiliation(s)
- Marilisa Giavalisco
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Teresa Zotta
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy.
| | - Eugenio Parente
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Gabriella Siesto
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Annamaria Ricciardi
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|
3
|
|
4
|
Relationship between Microbial Composition of Sourdough and Texture, Volatile Compounds of Chinese Steamed Bread. Foods 2022; 11:foods11131908. [PMID: 35804724 PMCID: PMC9265662 DOI: 10.3390/foods11131908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
The objective of this work was to explore the relationship between the microbial communities of sourdoughs collected from the Xinjiang and Gansu areas of China and the quality of steamed bread. Compared to yeast-based steamed bread, sourdough-based steamed bread is superior in terms of its hardness, adhesiveness, flexibility, and chewiness. It is rich in flavor compounds, but a significant difference in volatile flavor substances was observed between the two sourdoughs. A total of 19 strains of lactic acid bacteria (LAB) were isolated from the Gansu sourdough sample, in which Lactiplantibacillus plantarum and Pediococcus pentosaceus were the dominant species, accounting for 42.11% and 36.84%, respectively. A total of 16 strains of LAB were isolated from the Xinjiang sourdough sample, in which Lactiplantibacillus plantarum was the dominant species, accounting for 75%. High-throughput sequencing further confirmed these results. Clearly, the species diversity of Gansu sourdough was higher. The volatile profiles of the sourdoughs were similar, but differences in the individual volatile compounds were detected between the sourdoughs of the Gansu and Xinjiang regions. These results point out that the differences in the microbiota and the dominant strains lead to differences in the quality of sourdoughs from region to region. This investigation offers promising guidance on improving the quality of traditional steamed bread by adjusting the microorganisms in sourdough.
Collapse
|
5
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Kari ZA, Nirmal NP, Edinur HA, Ray RR. Engineered Biofilm: Innovative Nextgen Strategy for Quality Enhancement of Fermented Foods. Front Nutr 2022; 9:808630. [PMID: 35479755 PMCID: PMC9036442 DOI: 10.3389/fnut.2022.808630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
6
|
Antimicrobial activities of virgin olive oils in vitro and on lettuce from pathogen-inoculated commercial quick salad bags. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Zullo BA, Ciafardini G. Role of yeasts in the qualitative structuring of extra virgin olive oil. J Appl Microbiol 2022; 132:4033-4041. [PMID: 35137497 DOI: 10.1111/jam.15478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Abstract
This review sought to describe the role played by some components of the microbiota of extra virgin olive oil (EVOO), particularly yeasts, in structuring the physicochemical and sensorial quality of freshly produced olive oil. Yeasts can survive during the entire storage period of the product. To date, approximately 25 yeast species isolated from oil produced in more than six countries have been identified, eight of which are classified as new species. Some yeast species with probiotic traits improve the health qualities of oil, whereas many others improve the chemical composition and sensory characteristics based on β-glucosidase and esterase enzymes, which are involved in the hydrolysis of the bitter glucoside known as oleuropein. However, some species, which are typically favored by the high water content in the oily matrix, such as lipase-producing yeasts, can worsen the initial chemical characteristics of EVOO oil during storage. Some physical treatments that are compatible with the EVOO production specification affect the biotic component of the oil by reducing the concentration of yeasts. The possibility of minimizing the invasive action on the biotic component of the oil by appropriately selecting the physical treatment for each oil is discussed.
Collapse
Affiliation(s)
- B A Zullo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - G Ciafardini
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
8
|
Gallo A, Fancello F, Ghilardelli F, Zara S, Spanghero M. Effects of several commercial or pure lactic acid bacteria inoculants on fermentation and mycotoxin levels in high-moisture corn silage. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Shi Q, Wang X, Ju Z, Liu B, Lei C, Wang H, Li H. Technological and Safety Characterization of Kocuria rhizophila Isolates From Traditional Ethnic Dry-Cured Ham of Nuodeng, Southwest China. Front Microbiol 2021; 12:761019. [PMID: 34867891 PMCID: PMC8634685 DOI: 10.3389/fmicb.2021.761019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Nuodeng ham is known for its unique processing techniques and flavor. In the present study, proteolytic microorganisms from cured artisanal Nuodeng ham were investigated in order to identify and select potential starter cultures for its faster and safer fermentation. Eight isolates, accounting for 57% of proteolytic microorganisms, were found to be related to Kocuria rhizophila. Relevant properties of K. rhizophila as potential starter culture were evaluated in vitro for the first time. Intra-species diversities were found in phylogenetic and physiological properties of K. rhizophila isolates. Nevertheless, desirable attributes, such as halo-tolerance, nitrate reductase and protease activity, as well as the absence of antimicrobial resistance and amino acid decarboxylase activity, were observed in selected isolates. Moreover, genome analysis of isolates K24 and K45 confirmed their lack of typical genes for virulence, antimicrobial resistance and amino acid decarboxylase. K. rhizophila may thus represent a novel starter candidate of coagulase-negative cocci group and contribute to color and flavor development of fermented meats.
Collapse
Affiliation(s)
- Qiao Shi
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xinrui Wang
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zijing Ju
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Biqin Liu
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Li
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
10
|
|
11
|
Preservation, Characterization and Exploitation of Microbial Biodiversity of Agri-Food and Environmental Interest. Microorganisms 2020; 8:microorganisms8121938. [PMID: 33297349 PMCID: PMC7762223 DOI: 10.3390/microorganisms8121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022] Open
|
12
|
Hetta HF, Kh Meshaal A, Algammal AM, Yahia R, Makharita RR, Marraiki N, Shah MA, Hassan HAM, Batiha GES. In-vitro Antimicrobial Activity of Essential Oils and Spices Powder of some Medicinal Plants Against Bacillus Species Isolated from Raw and Processed Meat. Infect Drug Resist 2020; 13:4367-4378. [PMID: 33304102 PMCID: PMC7723237 DOI: 10.2147/idr.s277295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022] Open
Abstract
Background and Aim Bacillus species are widely distributed microorganisms in nature that are responsible for outbreaks of food poisoning and a common cause of food spoilage. This study aimed to isolate and identify foodborne Bacillus species from meat and to determine the antimicrobial activities of commercial essential oils and spices powder extracted from certain medicinal plants. Methods Sixty meat samples were collected in Assiut city and subdivided into raw meat and processed meat. Bacillus spp were isolated and identified according to their cultural characters, biochemical reactions, serological typing, and 16S rRNA gene sequencing. The antibacterial activity of essential oils and spices powder was measured by using well-diffusion and microbial count techniques. Results The prevalence of Bacillus spp. in the examined raw meat samples and processed meat samples was 13.34%, and 26.67%, respectively. There was a marked decrease in the total Bacillus species count after treatment of minced beef with essential oils and spices powder compared to the untreated one. Black seed oil was the most potent antibacterial essential oil among the tested oils present in this study. Conclusion Essential oils and spices powder of certain medicinal plants (cumin: Cuminum cyminum, black seeds: Nigella sativa, cloves: Syzygium aromaicum, cinnamon: Cinnamomum zeylanicum, and Marjoram: Origanum majorana) have a potential in vitro antimicrobial activity against Bacillus spp. Furthermore, Nigella sativa oil exhibited the most potent antibacterial activity against Bacillus spp.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt
| | - Ahmed Kh Meshaal
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Rabab R Makharita
- Biology Department, Faculty of Science and Arts Khulais, University of Jeddah, Jeddah, 21959, Saudi Arabia.,Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Hebat-Allah M Hassan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
13
|
Zara G, Budroni M, Mannazzu I, Fancello F, Zara S. Yeast biofilm in food realms: occurrence and control. World J Microbiol Biotechnol 2020; 36:134. [PMID: 32776210 PMCID: PMC7415760 DOI: 10.1007/s11274-020-02911-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
In natural environments, microorganisms form microbial aggregates called biofilms able to adhere to a multitude of different surfaces. Yeasts make no exception to this rule, being able to form biofilms in a plethora of environmental niches. In food realms, yeast biofilms may cause major problems due to their alterative activities. In addition, yeast biofilms are tenacious structures difficult to eradicate or treat with the current arsenal of antifungal agents. Thus, much effort is being made to develop novel approaches to prevent and disrupt yeast biofilms, for example through the use of natural antimicrobials or small molecules with both inhibiting and dispersing properties. The aim of this review is to provide a synopsis of the most recent literature on yeast biofilms regarding: (i) biofilm formation mechanisms; (ii) occurrence in food and in food-related environments; and (iii) inhibition and dispersal using natural compounds, in particular.
Collapse
Affiliation(s)
- Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
14
|
Virgin Olive Oil Quality Is Affected by the Microbiota that Comprise the Biotic Fraction of the Oil. Microorganisms 2020; 8:microorganisms8050663. [PMID: 32370070 PMCID: PMC7284754 DOI: 10.3390/microorganisms8050663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022] Open
Abstract
This review summarizes the current knowledge on the effects of oil-borne yeasts on the physicochemical, sensorial, and health-related characteristics of virgin olive oil (VOO) during storage. Bacteria, yeasts, and molds constitute the biotic fraction of freshly produced VOO. During storage, the bacteria and molds often die after a short period, while the yeasts survive and condition the quality of VOO. To date, approximately twenty-four yeast species have been isolated from different types of olive oil and its by-products, and seven of these species have been identified as new species. The activity of some yeasts of the biotic fraction of olive oil improves the sensorial characteristics of VOO. Some yeasts can also worsen the quality of the product by allowing the appearance of defects, oxidation of polar phenols, and triacylglycerol hydrolysis. Some yeast species of VOO show in vitro beneficial health effects, such as probiotic and antioxidant activities.
Collapse
|
15
|
Zullo BA, Ciafardini G. Differential Microbial Composition of Monovarietal and Blended Extra Virgin Olive Oils Determines Oil Quality During Storage. Microorganisms 2020; 8:E402. [PMID: 32183072 PMCID: PMC7142978 DOI: 10.3390/microorganisms8030402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Extra virgin olive oil (EVOO) contains a biotic fraction, which is characterized by various microorganisms, including yeasts. The colonization of microorganisms in the freshly produced EVOO is determined by the physicochemical characteristics of the product. The production of blended EVOO with balanced taste, which is obtained by blending several monovarietal EVOOs, modifies the original microbiota of each oil due to the differential physico-chemical characteristics of the blended oil. This study aimed to evaluate the effect of microbial composition on the stability of the quality indices of the monovarietal and blended EVOOs derived from Leccino, Peranzana, Coratina, and Ravece olive varieties after six months of storage. The yeasts survived only in the monovarietal EVOOs during six months of storage. Barnettozyma californica, Candida adriatica, Candida diddensiae, and Yamadazyma terventina were the predominant yeast species, whose abundance varied in the four monovarietal EVOOs. However, the number of yeasts markedly decreased during the first three months of storage in all blended EVOOs. Thus, all blended EVOOs were more stable than the monovarietal EVOOs as the abundance and activity of microorganisms were limited during storage.
Collapse
Affiliation(s)
- Biagi Angelo Zullo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, I-86100 Campobasso, Italy;
| | | |
Collapse
|
16
|
Gerasimchuk AL, Ivasenko DA, Bukhtiyarova PA, Antsiferov DV, Frank YA. Search for new cultured lipophilic bacteria in industrial fat-containing wastes. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202302012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fat-containing wastes that are generated as a result of industrial production of food products and are being accumulated in large quantities in wastewater and sewage treatment plants and present a serious environmental problem. Microorganisms that decompose various types of lipids may be potential candidates for creation of commercial bioformulations for fat destruction. The aim of the study was to obtain pure cultures of lipophilic bacteria from fat-containing wastes, to study their diversity and activity for the development of a biological product. As a result, 30 strains of different phylogenetic groups with lipolytic activity was obtained. The most isolated strains were represented by enterobacteria and pseudomonas members within the Gammaproteobacteria. Almost half of the isolated strains were closely related to conditionally pathogenic microorganisms such as Serratia, Klebsiella etc. Non-pathogenic strains and promising for biotechnology ones belonged to Pseudomonas citronellolis, P. nitroreducens, P. synxantha, P. extremaustralis, Bacillus subtilis, B. amyloliquefaciens, Brevibacillus brevis and Microvirgula sp.
Collapse
|