1
|
Silva Monteiro JP, da Silva AF, Delgado Duarte RT, José Giachini A. Exploring Novel Fungal-Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation. TOXICS 2024; 12:913. [PMID: 39771128 PMCID: PMC11728489 DOI: 10.3390/toxics12120913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified. The drop collapse test indicated that all fungal and four bacterial strains were capable of producing biosurfactants with a surface tension reduction of ≥20%. Quantitative analysis of extracellular laccase production revealed superior enzyme activity among the bacterial strains, particularly for Stenotrophomonas maltophilia P05R11. Following antagonistic testing, four compatible consortia were formulated. The degradation analysis of PAHs and TPH (C5-C40) present in diesel oil revealed a significantly higher degradation capacity for the consortia compared to isolated strains. The best results were observed for a mixed bacterial-fungal consortium, composed of Trichoderma koningiopsis P05R2, Serratia marcescens P10R19 and Burkholderia cepacia P05R9, with a degradation spectrum of ≥91% for all eleven PAHs analyzed, removing 93.61% of total PAHs, and 93.52% of TPH (C5-C40). Furthermore, this study presents the first report of T. koningiopsis as a candidate for bioremediation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- João Paulo Silva Monteiro
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - André Felipe da Silva
- Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Rubens Tadeu Delgado Duarte
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - Admir José Giachini
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| |
Collapse
|
2
|
Blanc DC, Duarte JA, Fiaux SB. Indigenous fungi with the ability to biodegrade hydrocarbons in diesel-contaminated soil are isolated and selected using a simple methodology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124431. [PMID: 38925214 DOI: 10.1016/j.envpol.2024.124431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Soil contamination by hydrocarbons is a problem that causes severe damage to the environment and public health. Technologies such as bioremediation using native microbial species represent a promising and environmentally friendly alternative for decontamination. This study aimed to isolate indigenous fungi species from the State of Rio de Janeiro, Brazil and evaluate their diesel degrading capacity in soils contaminated with crude oil. Seven filamentous fungi were isolated after enrichment cultivation from soils collected from contaminated sites and subjected to growth analysis on diesel nutrient media. Two fungal species were pre-selected and identified by morphological genus analysis and molecular techniques as Trichoderma asperellum and Penicillium pedernalense. The microdilution test showed that T. asperellum presented better fungal growth in high diesel concentrations than P. pedernalense. In addition, T. asperellum was able to degrade 41 and 54% of the total petroleum hydrocarbon (TPH) content present in soil artificially contaminated with diesel (10 g/kg of soil) in 7 and 14 days of incubation, respectively. In higher diesel concentration (1000 g of diesel/kg of soil) the TPH degradation reached 26%, 45%, and 48%, in 9, 16, and 30 d, respectively. The results demonstrated that the selected species was suitable for diesel degradation. We can also conclude that the isolation and selection process proposed in this work was successful and represents a simple alternative for obtaining native species with hydrocarbon degradation capacity, for use in the bioremediation process in the recovery of contaminated areas in an ecologically acceptable way.
Collapse
Affiliation(s)
- Daniele C Blanc
- Graduate Program in Biosystems Engineering, School of Engineering, Federal Fluminense University, 156 Passos da Pátria, Niteroi, RJ, 24210-240, Brazil.
| | - Jorge Andrés Duarte
- Graduate Program in Sciences and Biotechnology - PPBI, Block M, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niteroi, RJ, 24210-201, Brazil.
| | - Sorele B Fiaux
- Graduate Program in Biosystems Engineering, School of Engineering, Federal Fluminense University, 156 Passos da Pátria, Niteroi, RJ, 24210-240, Brazil; Microbial Technology Laboratory, Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, 523 Mario Viana, Niterói, RJ, 24241-001, Brazil.
| |
Collapse
|
3
|
Gaid M, Jentzsch W, Beermann H, Reinhard A, Meister M, Berzhanova R, Mukasheva T, Urich T, Mikolasch A. Comparative Bioremediation of Tetradecane, Cyclohexanone and Cyclohexane by Filamentous Fungi from Polluted Habitats in Kazakhstan. J Fungi (Basel) 2024; 10:436. [PMID: 38921423 PMCID: PMC11204954 DOI: 10.3390/jof10060436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Studying the fates of oil components and their interactions with ecological systems is essential for developing comprehensive management strategies and enhancing restoration following oil spill incidents. The potential expansion of Kazakhstan's role in the global oil market necessitates the existence of land-specific studies that contribute to the field of bioremediation. In this study, a set of experiments was designed to assess the growth and biodegradation capacities of eight fungal strains sourced from Kazakhstan soil when exposed to the hydrocarbon substrates from which they were initially isolated. The strains were identified as Aspergillus sp. SBUG-M1743, Penicillium javanicum SBUG-M1744, SBUG-M1770, Trichoderma harzianum SBUG-M1750 and Fusarium oxysporum SBUG-1746, SBUG-M1748, SBUG-M1768 and SBUG-M1769 using the internal transcribed spacer (ITS) region. Furthermore, microscopic and macroscopic evaluations agreed with the sequence-based identification. Aspergillus sp. SBUG-M1743 and P. javanicum SBUG-M1744 displayed remarkable biodegradation capabilities in the presence of tetradecane with up to a 9-fold biomass increase in the static cultures. T. harzianum SBUG-M1750 exhibited poor growth, which was a consequence of its low efficiency of tetradecane degradation. Monocarboxylic acids were the main degradation products by SBUG-M1743, SBUG-M1744, SBUG-M1750, and SBUG-M1770 indicating the monoterminal degradation pathway through β-oxidation, while the additional detection of dicarboxylic acid in SBUG-M1768 and SBUG-M1769 cultures was indicative of the fungus' ability to undertake both monoterminal and diterminal degradation pathways. F. oxysporum SBUG-M1746 and SBUG-M1748 in the presence of cyclohexanone showed a doubling of the biomass with the ability to degrade the substrate almost completely in shake cultures. F. oxysporum SBUG-M1746 was also able to degrade cyclohexane completely and excreted all possible metabolites of the degradation pathway. Understanding the degradation potential of these fungal isolates to different hydrocarbon substrates will help in developing effective bioremediation strategies tailored to local conditions.
Collapse
Affiliation(s)
- Mariam Gaid
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Wiebke Jentzsch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Hannah Beermann
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Anne Reinhard
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Mareike Meister
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Ramza Berzhanova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, Almaty 050040, Kazakhstan
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, Almaty 050040, Kazakhstan
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| |
Collapse
|
4
|
Zhang M, Chen Q, Gong Z. Microbial remediation of petroleum-contaminated soil focused on the mechanism and microbial response: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33325-33346. [PMID: 38709405 DOI: 10.1007/s11356-024-33474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The environmental pollution caused by petroleum hydrocarbons has received considerable attention in recent years. Microbial remediation has emerged as the preferred method for the degradation of petroleum hydrocarbons, which is experiencing rapid development driven by advancements in molecular biology. Herein, the capacity of different microorganisms used for crude oil bioremediation was reviewed. Moreover, factors influencing the effectiveness of microbial remediation were discussed. Microbial remediation methods, such as bioaugmentation, biostimulation, and bioventilation, are summarized in this review. Aerobic and anaerobic degradation mechanisms were reviewed to elucidate the metabolic pathways involved. The impacts of petroleum hydrocarbons on microorganisms and the environment were also revealed. A brief overview of synthetic biology and a unique perspective of technique combinations were presented to provide insight into research trends. The challenges and future outlook were also presented to stimulate contemplation of the mechanisms involved and the development of innovative techniques.
Collapse
Affiliation(s)
- Mingjian Zhang
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China
| | - Qing Chen
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China
| | - Zheng Gong
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China.
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China.
| |
Collapse
|
5
|
Wilms W, Homa J, Woźniak-Karczewska M, Owsianiak M, Chrzanowski Ł. Biodegradation half-lives of biodiesel fuels in aquatic and terrestrial systems: A review. CHEMOSPHERE 2023; 313:137236. [PMID: 36403813 DOI: 10.1016/j.chemosphere.2022.137236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Information on biodegradation kinetics of biodiesel fuels is a key aspect in risk and impact assessment practice and in selection of appropriate remediation strategies. Unfortunately, this information is scattered, while factors influencing variability in biodegradation rates are still not fully understood. Therefore, we systematically reviewed 32 scientific literature sources providing 142 biodegradation and 56 mineralization half-lives of diesel and biodiesel fuels in various experimental systems. The analysis focused on the variability in half-lives across fuels and experimental conditions, reporting sets of averaged half-life values and their statistical uncertainty. Across all data points, biodegradation half-lives ranged from 9 to 62 days, and were 2-5.5 times shorter than mineralization half-lives. Across all fuels, biodegradation and mineralization half-lives were 2.5-8.5 times longer in terrestrial systems when compared to aquatic systems. The half-lives were generally shorter for blends with increasing biodiesel content, although differences in number of data points from various experiments masked differences in half-lives between different fuels. This in most cases resulted in lack of statistically significant effects of the type of blends and experimental system on biodegradation half-lives. Our data can be used for improved characterization of risks and impacts of biodiesel fuels in aerobic aquatic and terrestrial environments, while more experiments are required to quantify biodegradation kinetics in anaerobic conditions. Relatively high biodegradability of biodiesel may suggest that passive approaches to degrade and dissipate contaminants in situ, like monitored natural attenuation, may be appropriate remediation strategies for biodiesel fuels.
Collapse
Affiliation(s)
- Wiktoria Wilms
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznań, Poland
| | - Jan Homa
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznań, Poland
| | | | - Mikołaj Owsianiak
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| | - Łukasz Chrzanowski
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznań, Poland
| |
Collapse
|
6
|
Kumar V, Kumar H, Vishal V, Lal S. Studies on the morphology, phylogeny, and bioremediation potential of Penicillium citrinum and Paecilomyces variotii (Eurotiales) from oil-contaminated areas. Arch Microbiol 2023; 205:50. [PMID: 36598589 DOI: 10.1007/s00203-022-03383-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Crude oil pollution is one of the most arduous issues to address, as it is hazardous to both public health and the environment. The discovery of novel biosurfactants-producing fungi and bacteria is in high demand due to their excellent properties and wide range of applications. The aim of this research is to isolate a powerful biosurfactant-producing fungus from the crude oil site near Barauni oil refinery in Bihar, India. Standard protocols were used to collect samples from the site. An integrative taxonomic approach was used, which included morphological, molecular, and phylogenetic analysis. The use of plating samples on Bushnell-Hass (BH) media aided in the isolation of a fungal strain from an enrichment culture. Two fungal strains isolated from contaminated soils, Penicillium citrinum and Paecilomyces variotti, showed potent oil degrading activity in a single culture. For preliminary biosurfactants screening, drop collapse assays, oil spreading, and emulsification activity tests were used. The results showed that the cultures performed well in the screening test and were further evaluated for degradation capacity. Different treatment periods (0, 3, 6, 9, 12, and 15 days) were used to observe degradation in single cultures. A steady drop in pH, an alteration in optical density and an increase in carbon dioxide release showed the ability of fungal strain to degrade the crude oil in a single culture. Fungi mycelia provide a larger surface area for absorption and degradation of the pollutants in contaminated environment. They produce extracellular enzymes to degrade the oil, and at the same time absorb and utilise carbon, allowing them to remove toxic substances from the oil. Thus, they could be candidates for bioremediation of a hydrocarbon-contaminated site.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India
| | - Harsh Kumar
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India
| | - Vineet Vishal
- Department of Botany, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India.,Department of Botany, Bangabasi Evening College, Kolkata, West Bengal, 700009, India
| | - Shalini Lal
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India. .,Department of Botany, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, 834008, India.
| |
Collapse
|
7
|
|
8
|
Komariah LN, Arita S, Rendana M, Ramayanti C, Suriani NL, Erisna D. Microbial contamination of diesel-biodiesel blends in storage tank; an analysis of colony morphology. Heliyon 2022; 8:e09264. [PMID: 35464710 PMCID: PMC9018388 DOI: 10.1016/j.heliyon.2022.e09264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022] Open
Abstract
Fuel contamination is a major issue that comes with the utilization of biodiesel. Microbial growth is one of the primary causes of contamination during fuel handling and storage. This work attempts to identify the types, shapes, and growth profiles of microorganisms on fuel samples. The morphology of microbial colonies is presented in order to analyze the potential of fuel contamination. The diesel, biodiesel, and blends are stored in stainless steel (SS) and glass tanks, where each is placed indoors and outdoors during the 90 days of storage time. The morphology of microbial colonies is observed through a microscope with a magnification of 1000× and the quantity is calculated by a digital colony counter. Microbial contamination in all samples is considered as high contamination where the Colony Forming Unit (CFU) is greater than 105 L−1. Colony forms are far more assorted in blends than in pure diesel (B0) and neat biodiesel (B100). The transformation of microbial colonies accelerates after 60 days of storage time. The results reveal that the number of bacterial colonies that grow in B20 is higher and more varied, nevertheless, the contamination in B100 is significantly higher. This is indicated by a 1.5-fold rise in B20 acidity and a 2.5-fold increase in water content compared to the initial condition.
Collapse
Affiliation(s)
- Leily Nurul Komariah
- Chemical Engineering, Department Faculty of Engineering Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
- Corresponding author.
| | - Susila Arita
- Chemical Engineering, Department Faculty of Engineering Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
| | - Muhammad Rendana
- Chemical Engineering, Department Faculty of Engineering Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
| | - Cindi Ramayanti
- Chemical Engineering, Department State Polytechnic of Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
| | - Ni Luh Suriani
- Biology Study Program, Faculty of Mathematics, and Natural Sciences, Udayana University, Denpasar, Bali, 80232, Indonesia
| | - Desi Erisna
- Energy Engineering Laboratory Universitas Sriwijaya, Indralaya, South Sumatera, 30662, Indonesia
| |
Collapse
|
9
|
Isolation and Characterization of Diesel-Degrading Bacteria from Hydrocarbon-Contaminated Sites, Flower Farms, and Soda Lakes. Int J Microbiol 2022; 2022:5655767. [PMID: 35096070 PMCID: PMC8799363 DOI: 10.1155/2022/5655767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrocarbon-derived pollutants are becoming one of the most concerning ecological issues. Thus, there is a need to investigate and develop innovative, low-cost, eco-friendly, and fast techniques to reduce and/or eliminate pollutants using biological agents. The study was conducted to isolate, characterize, and identify potential diesel-degrading bacteria. Samples were collected from flower farms, lakeshores, old aged garages, asphalt, and bitumen soils and spread on selective medium (Bushnell Haas mineral salt agar) containing diesel as the growth substrate. The isolates were characterized based on their growth patterns using optical density measurement, biochemical tests, and gravimetric analysis and identified using the Biolog database and 16S rRNA gene sequencing techniques. Subsequently, six diesel degraders were identified and belong to Pseudomonas, Providencia, Roseomonas, Stenotrophomonas, Achromobacter, and Bacillus. Among these, based on gravimetric analysis, the three potent isolates AAUW23, AAUG11, and AAUG36 achieved 84%, 83.4%, and 83% diesel degradation efficiency, respectively, in 15 days. Consequently, the partial 16S rRNA gene sequences revealed that the two most potent bacterial strains (AAUW23 and AAUG11) were Pseudomonas aeruginosa, while AAUG36 was Bacillus subtilis. This study demonstrated that bacterial species isolated from hydrocarbon-contaminated and/or uncontaminated environments could be optimized to be used as potential bioremediation agents for diesel removal.
Collapse
|
10
|
Hegde GM, Aditya S, Wangdi D, Chetri BK. Mycoremediation: A Natural Solution for Unnatural Problems. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Dell’ Anno F, Rastelli E, Sansone C, Brunet C, Ianora A, Dell’ Anno A. Bacteria, Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era. Microorganisms 2021; 9:1695. [PMID: 34442774 PMCID: PMC8400010 DOI: 10.3390/microorganisms9081695] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Petroleum hydrocarbons (PHCs) are one of the most widespread and heterogeneous organic contaminants affecting marine ecosystems. The contamination of marine sediments or coastal areas by PHCs represents a major threat for the ecosystem and human health, calling for urgent, effective, and sustainable remediation solutions. Aside from some physical and chemical treatments that have been established over the years for marine sediment reclamation, bioremediation approaches based on the use of microorganisms are gaining increasing attention for their eco-compatibility, and lower costs. In this work, we review current knowledge concerning the bioremediation of PHCs in marine systems, presenting a synthesis of the most effective microbial taxa (i.e., bacteria, fungi, and microalgae) identified so far for hydrocarbon removal. We also discuss the challenges offered by innovative molecular approaches for the design of effective reclamation strategies based on these three microbial components of marine sediments contaminated by hydrocarbons.
Collapse
Affiliation(s)
- Filippo Dell’ Anno
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Antonio Dell’ Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
12
|
The effect of microbial growth on physicochemical properties of biodiesel–diesel mixtures. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Oro V, Stanisavljevic R, Nikolic B, Tabakovic M, Secanski M, Tosi S. Diversity of Mycobiota Associated with the Cereal Cyst Nematode Heterodera filipjevi Originating from Some Localities of the Pannonian Plain in Serbia. BIOLOGY 2021; 10:biology10040283. [PMID: 33915683 PMCID: PMC8066589 DOI: 10.3390/biology10040283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Heterodera filipjevi, the cereal cyst nematode, is one of the most globally recognized and economically important nematodes on wheat. As some other cyst nematodes that are plant root parasites, the cysts of H. filipjevi survive in soil for years and shelter a large number of microbes. The aims of this study were to investigate the diversity of mycobiota associated with the cereal cyst nematode H. filipjevi, to infer phylogenetic relationships of the found mycobiota, and to explore the ecological connection between fungi and the field history, including the potential of fungi in bioremediation and the production of novel bioactive compounds. The study showed that the fungal species associated with the H. filipjevi cysts belong to diverse phyla, including Ascomycota, Basidiomycota, and Mucoromycota. The members of Ascomycota (Fusarium avenaceum, Sarocladium kiliense, Setophoma terrestris) are plant parasites, indicating that crops were host plants for fungal infection of recent origin. The members of Basidiomycota (Bjerkandera adusta, Cerrena unicolor, Trametes hirsuta, etc.) are wood-decay fungi, the presence of which in agricultural soil indicates that forests were the preceding plants. Abstract Cereals, particularly wheat, are staple food of the people from the Balkans, dating back to the Neolithic age. In Serbia, cereals are predominantly grown in its northern part between 44° and 45.5° N of the Pannonian Plain. One of the most economically important nematodes on wheat is the cereal cyst nematode, Heterodera filipjevi. Cysts of H. filipjevi survive in soil for years and shelter a large number of microorganisms. The aims of this study were to investigate the diversity of mycobiota associated with the cereal cyst nematode H. filipjevi, to infer phylogenetic relationships of the found mycobiota, and to explore the ecological connection between fungi and the field history, including the potential of fungi in bioremediation and the production of novel bioactive compounds. Cysts were isolated from soil samples with a Spears apparatus and collected on a 150-µm sieve. The cysts were placed on potato dextrose agar, and maintained for two weeks at 27°C. Following fungal isolation and colony growing, the fungal DNA was extracted, the ITS region was amplified, and PCR products were sequenced. The study showed that the isolated fungal species belong to diverse phyla, including Ascomycota, Basidiomycota, and Mucoromycota. Ascomycota is represented by the families Clavicipitaceae, Sarocladiaceae, Nectriaceae, and Phaeosphaeriaceae. Basidiomycota is represented by the families Cerrenaceae, Polyporaceae, Phanerochaetaceae, and Meruliaceae, and the order Cantharellales. The family Mortierellaceae represents Mucoromycota. The members of Ascomycota and Basidiomycota both depict the field history. Ascomycota indicate the fungal infection is of recent origin, while Basidiomycota point toward the preceding host plants, enabling the plant field colonization history to be traced chronologically.
Collapse
Affiliation(s)
- Violeta Oro
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia; (R.S.); (B.N.)
- Correspondence: ; Tel.: +381-11-2660-049
| | - Rade Stanisavljevic
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia; (R.S.); (B.N.)
| | - Bogdan Nikolic
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia; (R.S.); (B.N.)
| | - Marijenka Tabakovic
- Agroecology and Cropping Practices Group, Maize Research Institute “Zemun Polje”, 11000 Belgrade, Serbia; (M.T.); (M.S.)
| | - Mile Secanski
- Agroecology and Cropping Practices Group, Maize Research Institute “Zemun Polje”, 11000 Belgrade, Serbia; (M.T.); (M.S.)
| | - Solveig Tosi
- Mycology Laboratory, Department of Earth & Environmental Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
14
|
Hawrot-Paw M, Koniuszy A, Zając G, Szyszlak-Bargłowicz J. Ecotoxicity of soil contaminated with diesel fuel and biodiesel. Sci Rep 2020; 10:16436. [PMID: 33009483 PMCID: PMC7532453 DOI: 10.1038/s41598-020-73469-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Fuels and their components accumulate in soil, and many soil organisms are exposed to this pollution. Compared to intensive research on the effect of conventional fuel on soil, very few studies have been conducted on soil ecotoxicity of biofuels. Considering the limited information available, the present study evaluated the changes caused by the presence of biodiesel and diesel fuel in soil. The reaction of higher plants and soil organisms (microbial communities and invertebrates) was analysed. Conventional diesel oil and two types of biodiesel (commercial and laboratory-made) were introduced into the soil. Two levels of contamination were applied-5 and 15% (w/w per dry matter of soil). The plate method was used to enumerate microorganisms from soil contaminated with biodiesel and diesel fuel. Phytotoxicity tests were conducted by a 3-day bioassay based on the seed germination and root growth of higher plant species (Sorghum saccharatum and Sinapis alba). Fourteen-day ecotoxicity tests on earthworm were performed using Eisenia fetida. Based on the results of the conducted tests it was found out that the organisms reacted to the presence of fuels in a diverse manner. As to the microorganisms, both the growth and reduction of their number were noted. The reaction depended on the group of microorganisms, type of fuel and dose of contamination. The lipolytic and amylolytic microorganisms as well as Pseudomonas fluorescens bacteria were particularly sensitive to the presence of fuels, especially biodiesel. Fuels, even at a high dose, stimulated the growth of fungi. Monocotyledonous sugar sorghum plants were more sensitive to the presence of fuels than dicotyledonous white mustard. There was also a significant negative impact of contamination level on plant growth and development. Biodiesel, to a greater extent than conventional fuel, adversely affected the survival and volume of earthworms.
Collapse
Affiliation(s)
- Małgorzata Hawrot-Paw
- Department of Renewable Energy Engineering, West Pomeranian University of Technology, Pawla VI 1, 71-459, Szczecin, Poland.
| | - Adam Koniuszy
- Department of Renewable Energy Engineering, West Pomeranian University of Technology, Pawla VI 1, 71-459, Szczecin, Poland
| | - Grzegorz Zając
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Gleboka 28, 20-612, Lublin, Poland
| | - Joanna Szyszlak-Bargłowicz
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Gleboka 28, 20-612, Lublin, Poland
| |
Collapse
|
15
|
Mortierella elongata Increases Plant Biomass among Non-Leguminous Crop Species. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050754] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent studies have shown that M. elongata (M. elongata) isolated from Populus field sites has a dual endophyte–saprotroph lifestyle and is able to promote the growth of Populus. However, little is known about the host fidelity of M. elongata and whether M. elongata strains differ from one another in their ability to promote plant growth. Here, we compared the impacts of three Populus-associated M. elongata isolates (PMI 77, PMI 93, and PMI 624) on the growth of seven different crop species by measuring plant height, plant dry biomass, and leaf area. M. elongata isolates PMI 624 and PMI 93 increased the plant height, leaf area, and plant dry weight of Citrullus lanatus, Zea mays, Solanum lycopersicum, and Cucurbita to a much greater degree than PMI 77 (33.9% to 14.1%). No significant impacts were observed for any isolate on the growth of Abelmoschus esculentus or Glycine max. On the contrary, Glycine max significantly decreased in height by 30.6% after the inoculation of M. elongata PMI 77. In conclusion, this study demonstrates that M. elongata generally promoted metrics of the plant performance among a diverse set of importantly non-leguminous crop species. Future research on understanding the molecular mechanisms that underlie strain and host variability is warranted.
Collapse
|