1
|
Shun EHK, Situ J, Tsoi JYH, Wu S, Cai J, Lo KHY, Chew NFS, Li Z, Poon RWS, Teng JLL, Cheng VCC, Yuen KY, Sridhar S. Rat hepatitis E virus (Rocahepevirus ratti) exposure in cats and dogs, Hong Kong. Emerg Microbes Infect 2024; 13:2337671. [PMID: 38551320 PMCID: PMC11018080 DOI: 10.1080/22221751.2024.2337671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Hepatitis E virus (HEV) variants infecting humans belong to two species: Paslahepevirus balayani (bHEV) and Rocahepevirus ratti (rat hepatitis E virus; rHEV). R. ratti is a ubiquitous rodent pathogen that has recently been recognized to cause hepatitis in humans. Transmission routes of rHEV from rats to humans are currently unknown. In this study, we examined rHEV exposure in cats and dogs to determine if they are potential reservoirs of this emerging human pathogen. Virus-like particle-based IgG enzymatic immunoassays (EIAs) capable of differentiating rHEV & bHEV antibody profiles and rHEV-specific real-time RT-PCR assays were used for this purpose. The EIAs could detect bHEV and rHEV patient-derived IgG spiked in dog and cat sera. Sera from 751 companion dogs and 130 companion cats in Hong Kong were tested with these IgG enzymatic immunoassays (EIAs). Overall, 13/751 (1.7%) dogs and 5/130 (3.8%) cats were sero-reactive to HEV. 9/751 (1.2%) dogs and 2/130 (1.5%) cats tested positive for rHEV IgG, which was further confirmed by rHEV immunoblots. Most rHEV-seropositive animals were from areas in or adjacent to districts reporting human rHEV infection. Neither 881 companion animals nor 652 stray animals carried rHEV RNA in serum or rectal swabs. Therefore, we could not confirm a role for cats and dogs in transmitting rHEV to humans. Further work is required to understand the reasons for low-level seropositivity in these animals.
Collapse
Affiliation(s)
- Estie Hon-Kiu Shun
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - James Yiu-Hung Tsoi
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Shusheng Wu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Jianpiao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Kelvin Hon-Yin Lo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Nicholas Foo-Siong Chew
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Zhiyu Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Rosana Wing-Shan Poon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Jade Lee-Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People’s Republic of China
| |
Collapse
|
2
|
Casares-Jimenez M, Corona-Mata D, Garcia-Garcia T, Manchado-Lopez L, Rios-Muñoz L, de Guia-Castro M, Lopez-Lopez P, Caceres-Anillo D, Camacho A, Caballero-Gomez J, Perez-Valero I, Gallo-Marin M, Perez AB, Ulrich RG, Rivero-Juarez A, Rivero A. Serological and molecular survey of rat hepatitis E virus ( Rocahepevirus ratti) in drug users. Emerg Microbes Infect 2024; 13:2396865. [PMID: 39193634 PMCID: PMC11376293 DOI: 10.1080/22221751.2024.2396865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
ABSTRACTRat hepatitis E virus (ratHEV) is an emerging cause of acute hepatitis of zoonotic origin. Since seroprevalence studies are scarce, at-risk groups are almost unknown. Because blood-borne infections frequently occur in people with drug use, who are particularly vulnerable to infection due to lack of housing and homelessness, this population constitutes a priority in which ratHEV infection should be evaluated. Therefore, the aim of this study was to evaluate the ratHEV seroprevalence and RNA detection rate in drug users as a potential at-risk population. We designed a retrospective study involving individuals that attended drug rehabilitation centres. Exposure to ratHEV was assessed by specific antibody detection using ELISA and dot blot (DB) assay and the presence of active infection by ratHEV RNA detection using RT-qPCR. Three-hundred and forty-one individuals were included, the most of them being men (67.7%) with an average age of 45 years. A total of 17 individuals showed specific IgG antibodies against ratHEV (4.6%; 95% CI; 3.1%-7.9%). One case of active ratHEV infection was identified (0.3%; 95% CI: 0.1%-1.8%). This was a 57-year-old homeless woman with limited financial resources, who had active cocaine and heroin use via parenteral route. In conclusion, we identified a potential exposure to ratHEV among drug users. Targeted studies in drug users with proper control groups are necessary to evaluate high-risk populations and transmission routes more accurately.
Collapse
Affiliation(s)
- Maria Casares-Jimenez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Diana Corona-Mata
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Transito Garcia-Garcia
- Immunogenomic and Molecular Pathogenesis, Zoonoses and Emerging Diseases Unit (ENZOEM), Genetic Department, University of Cordoba, Cordoba, Spain
| | - Leticia Manchado-Lopez
- Unidad de Drogas y Adicciones-CPD (UDA-CPD), Instituto Provincial Bienestar Social, Diputación Córdoba, Córdoba, España
| | - Lucia Rios-Muñoz
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
| | - Maria de Guia-Castro
- Unidad de Drogas y Adicciones-CPD (UDA-CPD), Instituto Provincial Bienestar Social, Diputación Córdoba, Córdoba, España
| | - Pedro Lopez-Lopez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - David Caceres-Anillo
- Unidad de Drogas y Adicciones-CPD (UDA-CPD), Instituto Provincial Bienestar Social, Diputación Córdoba, Córdoba, España
| | - Angela Camacho
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Javier Caballero-Gomez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Córdoba, España
| | - Ignacio Perez-Valero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Marina Gallo-Marin
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
| | - Ana Belen Perez
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
- Unidad de Microbiología, Hospital Universitario Reina Sofía, Córdoba, España
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, Germany
| | - Antonio Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| | - Antonio Rivero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, España
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III. Majadahonda, Madrid, España
| |
Collapse
|
3
|
Situ J, Hon-Yin Lo K, Cai JP, Li Z, Wu S, Hon-Kiu Shun E, Foo-Siong Chew N, Yiu-Hung Tsoi J, Sze-Man Chan G, Hei-Man Chan W, Chik-Yan Yip C, Sze KH, Chi-Chung Cheng V, Yuen KY, Sridhar S. An immunoassay system to investigate epidemiology of Rocahepevirus ratti (rat hepatitis E virus) infection in humans. JHEP Rep 2023; 5:100793. [PMID: 37575885 PMCID: PMC10415708 DOI: 10.1016/j.jhepr.2023.100793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background & Aims Rat hepatitis E virus (Rocahepevirus ratti; HEV-C1) is an emerging cause of hepatitis E that is divergent from conventional human-infecting HEV variants (Paslahepevirus balayani; HEV-A). Validated serological assays for HEV-C1 are lacking. We aimed to develop a parallel enzymatic immunoassay (EIA) system that identifies individuals with HEV-C1 exposure. We also aimed to conduct the first HEV-C1 seroprevalence study in humans using this validated EIA system. Methods Expressed HEV-A (HEV-A4 p239) and HEV-C1 (HEV-C1 p241) peptides were characterised. Blood samples were simultaneously tested in HEV-A4 p239 and HEV-C1 p241 IgG EIAs. An optical density (OD) cut-off-based interpretation algorithm for identifying samples seropositive for HEV-A or HEV-C1 was validated using RT-PCR-positive infection sera. This algorithm was used to measure HEV-C1 seroprevalence in 599 solid organ transplant recipients and 599 age-matched immunocompetent individuals. Results Both peptides formed virus-like particles. When run in HEV-A4 p239 and HEV-C1 p241 EIAs, HEV-A and HEV-C1 RT-PCR-positive samples formed distinct clusters with minimal overlap in a two-dimensional plot of optical density values. The final EIA interpretation algorithm showed high agreement with RT-PCR results (Cohen's κ = 0.959) and was able to differentiate HEV-A and HEV-C1 infection sera with an accuracy of 94.2% (95% CI: 85.8-98.4%). HEV-C1 IgG seroprevalence was 7/599 (1.2%) among solid organ transplant recipients and 4/599 (0.7%) among immunocompetent individuals. Five of 11 (45.5%) of these patients had history of transient hepatitis of unknown cause. Conclusions HEV-C1 exposure was identified in 11/1198 (0.92%) individuals in Hong Kong indicating endemic exposure. This is the first estimate of HEV-C1 seroprevalence in humans. The parallel IgG EIA algorithm is a valuable tool for investigating epidemiology and risk factors for HEV-C1 infection. Impact and Implications Rat hepatitis E virus has recently been discovered to infect humans, but antibody tests for this infection are lacking, making it difficult to gauge how common this infection is. We developed an antibody test algorithm that can identify individuals with past rat hepatitis E virus exposure. We used this algorithm to estimate rat hepatitis E exposure rates in humans in Hong Kong and found that approximately 1% of all tested people had been exposed to this virus previously.
Collapse
Affiliation(s)
- Jianwen Situ
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kelvin Hon-Yin Lo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhiyu Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shusheng Wu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Estie Hon-Kiu Shun
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Nicholas Foo-Siong Chew
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - James Yiu-Hung Tsoi
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gabriel Sze-Man Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Winson Hei-Man Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kong Hung Sze
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Hong Kong, China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| |
Collapse
|