1
|
Vázquez-Cuesta S, Lozano García N, Fernández AI, Olmedo M, Kestler M, Alcalá L, Marín M, Bermejo J, Díaz FFA, Muñoz P, Bouza E, Reigadas E. Microbiome profile and calprotectin levels as markers of risk of recurrent Clostridioides difficile infection. Front Cell Infect Microbiol 2023; 13:1237500. [PMID: 37780848 PMCID: PMC10534046 DOI: 10.3389/fcimb.2023.1237500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Clostridioides difficile infection (CDI) is the main cause of nosocomial diarrhoea in developed countries. Recurrent CDI (R-CDI), which affects 20%-30% of patients and significantly increases hospital stay and associated costs, is a key challenge. The main objective of this study was to explore the role of the microbiome and calprotectin levels as predictive biomarkers of R-CDI. Methods We prospectively (2019-2021) included patients with a primary episode of CDI. Clinical data and faecal samples were collected. The microbiome was analysed by sequencing the hypervariable V4 region of the 16S rRNA gene on an Illumina Miseq platform. Results We enrolled 200 patients with primary CDI, of whom 54 developed R-CDI and 146 did not. We analysed 200 primary samples and found that Fusobacterium increased in abundance, while Collinsella, Senegalimassilia, Prevotella and Ruminococcus decreased in patients with recurrent versus non-recurrent disease. Elevated calprotectin levels correlated significantly with R-CDI (p=0.01). We built a risk index for R-CDI, including as prognostic factors age, sex, immunosuppression, toxin B amplification cycle, creatinine levels and faecal calprotectin levels (overall accuracy of 79%). Discussion Calprotectin levels and abundance of microbial genera such as Fusobacterium and Prevotella in primary episodes could be useful as early markers of R-CDI. We propose a readily available model for prediction of R-CDI that can be applied at the initial CDI episode. The use of this tool could help to better tailor treatments according to the risk of R-CDI.
Collapse
Affiliation(s)
- Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Biochemistry and Molecular Biology Department, Faculty of Biology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Nuria Lozano García
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ana I. Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Olmedo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Martha Kestler
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Mercedes Marín
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Centro de Investigación Biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Javier Bermejo
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Centro de Investigación Biomédica en red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Fernández-Avilés Díaz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Centro de Investigación Biomédica en red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Centro de Investigación Biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Centro de Investigación Biomédica en red de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
2
|
Martín R, Rios-Covian D, Huillet E, Auger S, Khazaal S, Bermúdez-Humarán LG, Sokol H, Chatel JM, Langella P. Faecalibacterium: a bacterial genus with promising human health applications. FEMS Microbiol Rev 2023; 47:fuad039. [PMID: 37451743 PMCID: PMC10410495 DOI: 10.1093/femsre/fuad039] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
In humans, many diseases are associated with alterations in gut microbiota, namely increases or decreases in the abundance of specific bacterial groups. One example is the genus Faecalibacterium. Numerous studies have underscored that low levels of Faecalibacterium are correlated with inflammatory conditions, with inflammatory bowel disease (IBD) in the forefront. Its representation is also diminished in the case of several diseases, including colorectal cancer (CRC), dermatitis, and depression. Additionally, the relative presence of this genus is considered to reflect, at least in part, intestinal health status because Faecalibacterium is frequently present at reduced levels in individuals with gastrointestinal diseases or disorders. In this review, we first thoroughly describe updates to the taxonomy of Faecalibacterium, which has transformed a single-species taxon to a multispecies taxon over the last decade. We then explore the links discovered between Faecalibacterium abundance and various diseases since the first IBD-focused studies were published. Next, we examine current available strategies for modulating Faecalibacterium levels in the gut. Finally, we summarize the mechanisms underlying the beneficial effects that have been attributed to this genus. Together, epidemiological and experimental data strongly support the use of Faecalibacterium as a next-generation probiotic (NGP) or live biotherapeutic product (LBP).
Collapse
Affiliation(s)
- Rebeca Martín
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - David Rios-Covian
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eugénie Huillet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sarah Khazaal
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, F-75012, Paris, France
| | - Jean-Marc Chatel
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
3
|
Villafuerte Gálvez JA, Pollock NR, Alonso CD, Chen X, Xu H, Wang L, White N, Banz A, Miller M, Daugherty K, Gonzalez-Luna AJ, Barrett C, Sprague R, Garey KW, Kelly CP. Stool Interleukin-1β Differentiates Clostridioides difficile Infection (CDI) From Asymptomatic Carriage and Non-CDI Diarrhea. Clin Infect Dis 2023; 76:e1467-e1475. [PMID: 35906836 PMCID: PMC10169396 DOI: 10.1093/cid/ciac624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Despite advances in the understanding and diagnosis of Clostridioides difficile infection (CDI), clinical distinction within the colonization-infection continuum remains an unmet need. METHODS By measuring stool cytokines and antitoxin antibodies in well-characterized cohorts of CDI (diarrhea, nucleic acid amplification test [NAAT] positive), non-CDI diarrhea (NCD; diarrhea, NAAT negative), asymptomatic carriers (ASC; no diarrhea, NAAT positive) and hospital controls (CON; no diarrhea, NAAT negative), we aim to discover novel biological markers to distinguish between these cohorts. We also explore the relationship of these stool cytokines and antitoxin antibody with stool toxin concentrations and disease severity. RESULTS Stool interleukin (IL) 1β, stool immunoglobulin A (IgA), and immunoglobulin G (IgG) anti-toxin A had higher (P < .0001) concentrations in CDI (n = 120) vs ASC (n = 43), whereas toxins A, B, and fecal calprotectin did not. Areas under the receiver operating characteristic curve (ROC-AUCs) for IL-1β, IgA, and IgG anti-toxin A were 0.88, 0.83, and 0.83, respectively. A multipredictor model including IL-1β and IgA anti-toxin A achieved an ROC-AUC of 0.93. Stool IL-1β concentrations were higher in CDI compared to NCD (n = 75) (P < .0001) and NCD + ASC+ CON (CON, n = 75) (P < .0001), with ROC-AUCs of 0.83 and 0.86, respectively. Stool IL-1β had positive correlations with toxins A (ρA = +0.55) and B (ρB = +0.49) in CDI (P < .0001) but not in ASC (P > .05). CONCLUSIONS Stool concentrations of the inflammasome pathway, proinflammatory cytokine IL-1β, can accurately differentiate CDI from asymptomatic carriage and NCD, making it a promising biomarker for CDI diagnosis. Significant positive correlations exist between stool toxins and stool IL-1β in CDI but not in asymptomatic carriers.
Collapse
Affiliation(s)
- Javier A Villafuerte Gálvez
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Nira R Pollock
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolyn D Alonso
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Hua Xu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Lamei Wang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole White
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | - Kaitlyn Daugherty
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Anne J Gonzalez-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Caitlin Barrett
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Sprague
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Ciaran P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Vázquez-Cuesta S, Villar L, García NL, Fernández AI, Olmedo M, Alcalá L, Marín M, Muñoz P, Bouza E, Reigadas E. Characterization of the gut microbiome of patients with Clostridioides difficile infection, patients with non- C. difficile diarrhea, and C. difficile-colonized patients. Front Cell Infect Microbiol 2023; 13:1130701. [PMID: 37124040 PMCID: PMC10130453 DOI: 10.3389/fcimb.2023.1130701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Clostridioides difficile infection (CDI) is the main cause of nosocomial diarrhea in developed countries. A key challenge in CDI is the lack of objective methods to ensure more accurate diagnosis, especially when differentiating between true infection and colonization/diarrhea of other causes. The main objective of this study was to explore the role of the microbiome as a predictive biomarker of CDI. Methods Between 2018 and 2021, we prospectively included patients with CDI, recurrent CDI (R-CDI), non-CDI diarrhea (NO-CDI), colonization by C. difficile, and healthy individuals. Clinical data and fecal samples were collected. The microbiome was analyzed by sequencing the hypervariable V4 region of the 16S rRNA gene on an Illumina Miseq platform. The mothur bioinformatic pipeline was followed for pre-processing of raw data, and mothur and R were used for data analysis. Results During the study period, 753 samples from 657 patients were analyzed. Of these, 247 were from patients with CDI, 43 were from patients colonized with C. difficile, 63 were from healthy individuals, 324 were from NOCDI, and 76 were from R-CDI. We found significant differences across the groups in alpha and beta diversity and in taxonomic abundance. We identified various genera as the most significant biomarkers for CDI (Bacteroides, Proteus, Paraprevotella, Robinsoniella), R-CDI (Veillonella, Fusobacterium, Lactobacillus, Clostridium sensu stricto I), and colonization by C. difficile (Parabacteroides, Faecalicoccus, Flavonifractor, Clostridium XVIII). Discussion We observed differences in microbiome patterns between healthy individuals, colonized patients, CDI, R-CDI, and NOCDI diarrhea. We identified possible microbiome biomarkers that could prove useful in the diagnosis of true CDI infections. Further studies are warranted.
Collapse
Affiliation(s)
- Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Biochemistry and Molecular Biology Department, Faculty of Biology, Universidad Complutense de Madrid (UCM), Madrid, Spain
- *Correspondence: Silvia Vázquez-Cuesta,
| | - Laura Villar
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Nuria Lozano García
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ana I. Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Olmedo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Mercedes Marín
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Clostridioides difficile (ESGCD), Basel, Switzerland
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Clostridioides difficile (ESGCD), Basel, Switzerland
| |
Collapse
|
5
|
Wen BJ, Te LG, Liu XX, Zhao JH. The value of fecal calprotectin in Clostridioides difficile infection: A systematic review. Front Physiol 2022; 13:881816. [PMID: 35991191 PMCID: PMC9382106 DOI: 10.3389/fphys.2022.881816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
As a marker of inflammation, calprotectin has potential application value in a variety of inflammatory diseases, such as arthritis and bacterial infections. Clostridioides difficile infection (CDI) is an infectious disease that causes intestinal damage and inflammation. This systematic review aims to determine whether fecal calprotectin has application value in CDI. Nine databases were searched from inception to 6 June 2022, and 17 studies were included. These studies were divided into four groups according to their content. Generally speaking, fecal calprotectin is not an ideal indicator for the diagnosis and prognosis prediction of CDI but may serve as a potential indicator for assessing disease severity and as a readily detectable marker for CDI screening. In addition, patients in need of treatment or with detectable toxins in stool may tend to have higher levels of fecal calprotectin. In summary, fecal calprotectin has some potential application value in CDI. However, further studies are needed to verify these findings and determine the reliability of calprotectin as a biomarker for CDI.
Collapse
Affiliation(s)
- Bao-Jiang Wen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Ger Te
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-Xuan Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian-Hong Zhao
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
- *Correspondence: Jian-Hong Zhao,
| |
Collapse
|
6
|
Couturier J, Lepage P, Jolivet S, Delannoy J, Mesa V, Ancel PY, Rozé JC, Butel MJ, Barbut F, Aires J. Gut Microbiota Diversity of Preterm Neonates Is Associated With Clostridioides Difficile Colonization. Front Cell Infect Microbiol 2022; 12:907323. [PMID: 35873148 PMCID: PMC9296818 DOI: 10.3389/fcimb.2022.907323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
In adults, Clostridioides difficile infections are associated with alterations of the intestinal bacterial populations. Although preterm neonates (PN) are frequently colonized by C. difficile, limited data are available regarding the relationship between C. difficile and the intestinal microbiota of this specific population. Therefore, we studied the intestinal microbiota of PN from two multicenter cohorts using high-throughput sequencing of the bacterial 16S rRNA gene. Our results showed that alpha diversity was significantly higher in children colonized by C. difficile than those without colonization. Beta diversity significantly differed between the groups. In multivariate analysis, C. difficile colonization was significantly associated with the absence of postnatal antibiotherapy and higher gestational age. Taxa belonging to the Lachnospiraceae, Enterobacteriaceae, Oscillospiraceae families and Veillonella sp. were positively associated with C. difficile colonization, whereas Bacteroidales and Bifidobacterium breve were negatively associated with C. difficile colonization. After adjustment for covariables, Clostridioides, Rothia, Bifidobacterium, Veillonella, Eisenbergiella genera and Enterobacterales were more abundant in the gut microbiota of colonized children. There was no significant association between C. difficile colonization and necrotizing enterocolitis in PN. Our results suggest that C. difficile colonization in PN is related to the establishment of physiological microbiota.
Collapse
Affiliation(s)
- Jeanne Couturier
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
- National Reference Laboratory for Clostridioides difficile, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
- *Correspondence: Jeanne Couturier,
| | - Patricia Lepage
- Paris-Saclay University, institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sarah Jolivet
- Infection Control Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Johanne Delannoy
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
| | - Victoria Mesa
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
| | - Pierre-Yves Ancel
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR 1153, Obstetrical, Perinatal and Pediatric Epidemiology Team (EPOPé), Center of Research in Epidemiology and Statistics (CRESS), Fédération hospitalo-universitaire (FHU) PREMA, Paris, France
- Unité de recherche clinique-Centre d'investigation clinique (URC-CIC) P1419, Hôpitaux universitaires Paris Centre (HUPC), Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Christophe Rozé
- Pediatric Intensive Care Unit, Mothers’ and children’s Hospital, Nantes Teaching Hospital, Nantes, France
| | - Marie-José Butel
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
| | - Frédéric Barbut
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
- National Reference Laboratory for Clostridioides difficile, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
- Infection Control Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Julio Aires
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
| |
Collapse
|
7
|
Vasilescu IM, Chifiriuc MC, Pircalabioru GG, Filip R, Bolocan A, Lazăr V, Diţu LM, Bleotu C. Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Front Microbiol 2022; 12:651081. [PMID: 35126320 PMCID: PMC8810811 DOI: 10.3389/fmicb.2021.651081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we focus on gut microbiota profiles in infants and adults colonized (CDC) or infected (CDI) with Clostridioides difficile. After a short update on CDI epidemiology and pathology, we present the gut dysbiosis profiles associated with CDI in adults and infants, as well as the role of dysbiosis in C. difficile spores germination and multiplication. Both molecular and culturomic studies agree on a significant decrease of gut microbiota diversity and resilience in CDI, depletion of Firmicutes, Bacteroidetes, and Actinobacteria phyla and a high abundance of Proteobacteria, associated with low butyrogenic and high lactic acid-bacteria levels. In symptomatic cases, microbiota deviations are associated with high levels of inflammatory markers, such as calprotectin. In infants, colonization with Bifidobacteria that trigger a local anti-inflammatory response and abundance of Ruminococcus, together with lack of receptors for clostridial toxins and immunological factors (e.g., C. difficile toxins neutralizing antibodies) might explain the lack of clinical symptoms. Gut dysbiosis amelioration through administration of “biotics” or non-toxigenic C. difficile preparations and fecal microbiota transplantation proved to be very useful for the management of CDI.
Collapse
Affiliation(s)
- Iulia-Magdalena Vasilescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- INBI “Prof. Dr. Matei Balş” – National Institute for Infectious Diseases, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- *Correspondence: Mariana-Carmen Chifiriuc,
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Regional County Emergency Hospital, Suceava, Romania
| | - Alexandra Bolocan
- Department of General Surgery, University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Diţu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Ştefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| |
Collapse
|
8
|
Gomez SY, Patel J, Lopez CA. What's metal got to do with it? Transition metals in Clostridioides difficile infection. Curr Opin Microbiol 2021; 65:116-122. [PMID: 34839238 DOI: 10.1016/j.mib.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
The enteric pathogen Clostridioides difficile overcomes barriers to colonization imposed by the microbiota and host immune response to induce disease. To navigate the dynamic gut environment, C. difficile must respond to dietary and host-mediated fluctuations in transition metal availability. Transition metals are required trace nutrients that foster inter-microbial competition when limited, inhibit bacterial growth through host sequestration, or induce toxicity in excess. This review highlights recent evidence that transition metals influence multiple stages of C. difficile colonization and that C. difficile initiates a coordinated response to maintain metal-dependent homeostasis. Further exploration of the mechanisms of C. difficile metal sensing and nutrient competition with the microbiota will be necessary for the therapeutic manipulation of the gut environment during C. difficile infection.
Collapse
Affiliation(s)
- Suzanna Y Gomez
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA, United States
| | - Jay Patel
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA, United States
| | - Christopher A Lopez
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA, United States.
| |
Collapse
|