1
|
Song B, Xue Y, Yu Z, He Y, Liu Z, Fang J, Wang Y, Adams JM, Hu Y, Razavi BS. Toxic metal contamination effects mediated by hotspot intensity of soil enzymes and microbial community structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133556. [PMID: 38262314 DOI: 10.1016/j.jhazmat.2024.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Metal contamination from mine waste is a widespread threat to soil health. Understanding of the effects of toxic metals from mine waste on the spatial patterning of rhizosphere enzymes and the rhizosphere microbiome remains elusive. Using zymography and high-throughput sequencing, we conducted a mesocosm experiment with mine-contaminated soil, to compare the effects of different concentrations of toxic metals on exoenzyme kinetics, microbial communities, and maize growth. The negative effects of toxic metals exerted their effects largely on enzymatic hotspots in the rhizosphere zone, affecting both resistance and the area of hotspots. This study thus revealed the key importance of such hotspots in overall changes in soil enzymatic activity under metal toxicity. Statistical and functional guild analysis suggested that these enzymatic changes and associated microbial community changes were involved in the inhibition of maize growth. Keystone species of bacteria displayed negative correlations with toxic metals and positive correlations with the activity of enzymatic hotspots, suggesting a potential role. This study contributes to an emerging paradigm, that changes both in the activity of soil enzymes and soil biota - whether due to substrate addition or in this case toxicity - are largely confined to enzymatic hotspot areas.
Collapse
Affiliation(s)
- Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; University of Helsinki, Department of Forest Sciences, Helsinki, Finland
| | - Yue Xue
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China
| | - Yucheng He
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Zihao Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Jie Fang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Yuchao Wang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, China
| | - Jonathan M Adams
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
| | - Youning Hu
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| |
Collapse
|
2
|
Bei Q, Reitz T, Schnabel B, Eisenhauer N, Schädler M, Buscot F, Heintz-Buschart A. Extreme summers impact cropland and grassland soil microbiomes. THE ISME JOURNAL 2023; 17:1589-1600. [PMID: 37419993 PMCID: PMC10504347 DOI: 10.1038/s41396-023-01470-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
The increasing frequency of extreme weather events highlights the need to understand how soil microbiomes respond to such disturbances. Here, metagenomics was used to investigate the effects of future climate scenarios (+0.6 °C warming and altered precipitation) on soil microbiomes during the summers of 2014-2019. Unexpectedly, Central Europe experienced extreme heatwaves and droughts during 2018-2019, causing significant impacts on the structure, assembly, and function of soil microbiomes. Specifically, the relative abundance of Actinobacteria (bacteria), Eurotiales (fungi), and Vilmaviridae (viruses) was significantly increased in both cropland and grassland. The contribution of homogeneous selection to bacterial community assembly increased significantly from 40.0% in normal summers to 51.9% in extreme summers. Moreover, genes associated with microbial antioxidant (Ni-SOD), cell wall biosynthesis (glmSMU, murABCDEF), heat shock proteins (GroES/GroEL, Hsp40), and sporulation (spoIID, spoVK) were identified as potential contributors to drought-enriched taxa, and their expressions were confirmed by metatranscriptomics in 2022. The impact of extreme summers was further evident in the taxonomic profiles of 721 recovered metagenome-assembled genomes (MAGs). Annotation of contigs and MAGs suggested that Actinobacteria may have a competitive advantage in extreme summers due to the biosynthesis of geosmin and 2-methylisoborneol. Future climate scenarios caused a similar pattern of changes in microbial communities as extreme summers, but to a much lesser extent. Soil microbiomes in grassland showed greater resilience to climate change than those in cropland. Overall, this study provides a comprehensive framework for understanding the response of soil microbiomes to extreme summers.
Collapse
Affiliation(s)
- Qicheng Bei
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Beatrix Schnabel
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Chattopadhyay S, Ramachandran P, Malayil L, Mongodin EF, Sapkota AR. Conventional tobacco products harbor unique and heterogenous microbiomes. ENVIRONMENTAL RESEARCH 2023; 220:115205. [PMID: 36592812 PMCID: PMC9898174 DOI: 10.1016/j.envres.2022.115205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
While an increasing number of studies have evaluated tobacco microbiomes, comparative microbiome analyses across diverse tobacco products are non-existent. Moreover, to our knowledge, no previous studies have characterized the metabolically-active (live) fraction of tobacco bacterial communities and compared them across products. To address these knowledge gaps, we compared bacterial communities across four commercial products (cigarettes, little cigars, cigarillos and hookah) and one research cigarette product. After total DNA extraction (n = 414) from all samples, the V3V4 region of the 16S rRNA gene was sequenced on the Illumina HiSeq platform. To identify metabolically-active bacterial communities within these products, we applied a coupled 5-bromo-2'-deoxyuridine labeling and sequencing approach to a subset of samples (n = 56). Each tobacco product was characterized by its signature microbiome, along with a shared microbiome across all tobacco products consisting of Pseudomonas aeruginosa, P. putida, P. alcaligenes, Bacillus subtilis, and Klebsiella pneumoniae. Comparing across products (using Linear discriminant analysis Effect Size (LEfSe)), a significantly higher (p < 0.05) relative abundance of Klebsiella and Acinetobacter was observed in commercial cigarettes, while a higher relative abundance of Pseudomonas and Pantoea was observed in research cigarettes. Methylorubrum and Paenibacillus were higher in hookah, and Brevibacillus, Lactobacillus, Bacillus, Lysinibacillus, and Staphylococcus were higher in little cigars and cigarillos. Across all products, the majority of the metabolically-active bacterial communities belonged to the genus Pseudomonas, followed by several genera within the Firmicutes phylum (Bacillus, Terribacillus, and Oceanobacillus). Identification of some metabolically-active pathogens such as Bacillus cereus and Haemophilus parainfluenzae in commercial products is of concern because of the potential for these microorganisms to be transferred to users' respiratory tracts via mainstream smoke. Future work is warranted to evaluate the potential impact of these tobacco bacterial communities on users' oral and lung microbiomes, which play such an important role on the spectrum from health to disease.
Collapse
Affiliation(s)
- Suhana Chattopadhyay
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Padmini Ramachandran
- Food and Drug Administration, Office of Regulatory Science, Division of Microbiology, HFS-712, College Park, MD, USA
| | - Leena Malayil
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA.
| |
Collapse
|
4
|
Juncheed K, Tanunchai B, Wahdan SFM, Thongsuk K, Schädler M, Noll M, Purahong W. Dark side of a bio-based and biodegradable plastic? Assessment of pathogenic microbes associated with poly(butylene succinate-co-adipate) under ambient and future climates using next-generation sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:966363. [PMID: 36311114 PMCID: PMC9610124 DOI: 10.3389/fpls.2022.966363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Bio-based and biodegradable plastic mulching films have been proposed to replace the non-biodegradable plastic mulch films to solve plastic pollution problems in agricultural soils. However, the impact of bio-based and biodegradable plastics on plant and human health remains largely unexplored. Here, we aimed to assess the risk under field conditions of a bio-based and biodegradable poly(butylene succinate-co-adipate; PBSA), a widely used mulching film as carrier of potential pathogenic microorganisms (bacteria and fungi) at ambient and future climate conditions. Overall, we affiliated 64 fungal and 11 bacterial operational taxonomic units (OTUs) as pathogens by using Next-Generation Sequencing approach. Our results revealed that PBSA hosted at least 53 plant pathogens, of which 51 were classified as fungi, while the other two were bacteria. Most fungal plant pathogens were able to withstand the anticipated future climate changes. We detected 13 fungal and eight bacterial OTUs, which were classified as opportunistic human pathogens. Only one bacterial OTU (Enterococcus faecium) was assigned to a human pathogen. While future climate conditions only significantly impacted on the presence and frequency of detection of few pathogens, incubation time was found to significantly impacted on nine pathogens. This result demonstrates the temporal dynamics of pathogens associated with PBSA. The threats to plant and human health were discussed. We emphasize that the risks to human health are relatively low because we mainly found opportunistic pathogens associated with PBSA and the amount are comparable to the plant debris. However, the risks to plant health may be considered as moderate because many plant pathogens were discovered and/or enriched in PBSA. Furthermore, in soil environments, the pathogenic risk of plastic is highly depending on the surrounding soil pathobiome where plastic is being decomposed.
Collapse
Affiliation(s)
- Kantida Juncheed
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Halle (Saale), Germany
| | - Benjawan Tanunchai
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Halle (Saale), Germany
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Sara Fareed Mohamed Wahdan
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Halle (Saale), Germany
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Katikarn Thongsuk
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Halle (Saale), Germany
| | - Martin Schädler
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Matthias Noll
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Witoon Purahong
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Halle (Saale), Germany
| |
Collapse
|
5
|
Wahdan SFM, Hossen S, Tanunchai B, Sansupa C, Schädler M, Noll M, Dawoud TM, Wu YT, Buscot F, Purahong W. Life in the Wheat Litter: Effects of Future Climate on Microbiome and Function During the Early Phase of Decomposition. MICROBIAL ECOLOGY 2022; 84:90-105. [PMID: 34487212 PMCID: PMC9250916 DOI: 10.1007/s00248-021-01840-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Even though it is widely acknowledged that litter decomposition can be impacted by climate change, the functional roles of microbes involved in the decomposition and their answer to climate change are less understood. This study used a field experimental facility settled in Central Germany to analyze the effects of ambient vs. future climate that is expected in 50-80 years on mass loss and physicochemical parameters of wheat litter in agricultural cropland at the early phase of litter decomposition process. Additionally, the effects of climate change were assessed on microbial richness, community compositions, interactions, and their functions (production of extracellular enzymes), as well as litter physicochemical factors shaping their colonization. The initial physicochemical properties of wheat litter did not change between both climate conditions; however, future climate significantly accelerated litter mass loss as compared with ambient one. Using MiSeq Illumina sequencing, we found that future climate significantly increased fungal richness and altered fungal communities over time, while bacterial communities were more resistant in wheat residues. Changes on fungal richness and/or community composition corresponded to different physicochemical factors of litter under ambient (Ca2+, and pH) and future (C/N, N, P, K+, Ca2+, pH, and moisture) climate conditions. Moreover, highly correlative interactions between richness of bacteria and fungi were detected under future climate. Furthermore, the co-occurrence networks patterns among dominant microorganisms inhabiting wheat residues were strongly distinct between future and ambient climates. Activities of microbial β-glucosidase and N-acetylglucosaminidase in wheat litter were increased over time. Such increased enzymatic activities were coupled with a significant positive correlation between microbial (both bacteria and fungi) richness and community compositions with these two enzymatic activities only under future climate. Overall, we provide evidence that future climate significantly impacted the early phase of wheat litter decomposition through direct effects on fungal communities and through indirect effects on microbial interactions as well as corresponding enzyme production.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522 Egypt
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Shakhawat Hossen
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Institute of Ecology and Evolution, Friedrich-Schiller-Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Chakriya Sansupa
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Martin Schädler
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Matthias Noll
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Turki M. Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Neipu, Pingtung 91201 Taiwan
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
6
|
Purahong W, Wahdan SFM, Heinz D, Jariyavidyanont K, Sungkapreecha C, Tanunchai B, Sansupa C, Sadubsarn D, Alaneed R, Heintz-Buschart A, Schädler M, Geissler A, Kressler J, Buscot F. Back to the Future: Decomposability of a Biobased and Biodegradable Plastic in Field Soil Environments and Its Microbiome under Ambient and Future Climates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12337-12351. [PMID: 34486373 DOI: 10.1021/acs.est.1c02695] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Decomposition by microorganisms of plastics in soils is almost unexplored despite the fact that the majority of plastics released into the environment end up in soils. Here, we investigate the decomposition process and microbiome of one of the most promising biobased and biodegradable plastics, poly(butylene succinate-co-adipate) (PBSA), under field soil conditions under both ambient and future predicted climates (for the time between 2070 and 2100). We show that the gravimetric and molar mass of PBSA is already largely reduced (28-33%) after 328 days under both climates. We provide novel information on the PBSA microbiome encompassing the three domains of life: Archaea, Bacteria, and Eukarya (fungi). We show that PBSA begins to decompose after the increase in relative abundances of aquatic fungi (Tetracladium spp.) and nitrogen-fixing bacteria. The PBSA microbiome is distinct from that of surrounding soils, suggesting that PBSA serves as a new ecological habitat. We conclude that the microbial decomposition process of PBSA in soil is more complex than previously thought by involving interkingdom relationships, especially between bacteria and fungi.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Daniel Heinz
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Katalee Jariyavidyanont
- Center of Engineering Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Chanita Sungkapreecha
- Center of Engineering Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Chakriya Sansupa
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Dolaya Sadubsarn
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Razan Alaneed
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Anna Heintz-Buschart
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Andreas Geissler
- Department of Macromolecular Chemistry and Paper Chemistry, Technical University of Darmstadt, Darmstadt D-64287, Germany
| | - Joerg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
| |
Collapse
|
7
|
Wahdan SFM, Tanunchai B, Wu Y, Sansupa C, Schädler M, Dawoud TM, Buscot F, Purahong W. Deciphering Trifolium pratense L. holobiont reveals a microbiome resilient to future climate changes. Microbiologyopen 2021; 10:e1217. [PMID: 34459547 PMCID: PMC8302017 DOI: 10.1002/mbo3.1217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
The plant microbiome supports plant growth, fitness, and resistance against climate change. Trifolium pratense (red clover), an important forage legume crop, positively contributes to ecosystem sustainability. However, T. pratense is known to have limited adaptive ability toward climate change. Here, the T. pratense microbiomes (including both bacteria and fungi) of the rhizosphere and the root, shoot, and flower endospheres were comparatively examined using metabarcoding in a field located in Central Germany that mimics the climate conditions projected for the next 50-70 years in comparison with the current climate conditions. Additionally, the ecological functions and metabolic genes of the microbial communities colonizing each plant compartment were predicted using FUNGuild, FAPROTAX, and Tax4Fun annotation tools. Our results showed that the individual plant compartments were colonized by specific microbes. The bacterial and fungal community compositions of the belowground plant compartments did not vary under future climate conditions. However, future climate conditions slightly altered the relative abundances of specific fungal classes of the aboveground compartments. We predicted several microbial functional genes of the T. pratense microbiome involved in plant growth processes, such as biofertilization (nitrogen fixation, phosphorus solubilization, and siderophore biosynthesis) and biostimulation (phytohormone and auxin production). Our findings indicated that T. pratense microbiomes show a degree of resilience to future climate changes. Additionally, microbes inhabiting T. pratense may not only contribute to plant growth promotion but also to ecosystem sustainability.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
- Department of BiologyLeipzig UniversityLeipzigGermany
- Botany DepartmentFaculty of ScienceSuez Canal UniversityIsmailiaEgypt
| | - Benjawan Tanunchai
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
| | - Yu‐Ting Wu
- Department of ForestryNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Chakriya Sansupa
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
| | - Martin Schädler
- Department of Community EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
| | - Turki M. Dawoud
- Botany and Microbiology DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - François Buscot
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
- Botany and Microbiology DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Witoon Purahong
- Department of Soil EcologyUFZ‐Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
| |
Collapse
|
8
|
Can We Use Functional Annotation of Prokaryotic Taxa (FAPROTAX) to Assign the Ecological Functions of Soil Bacteria? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020688] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FAPROTAX is a promising tool for predicting ecological relevant functions of bacterial and archaeal taxa derived from 16S rRNA amplicon sequencing. The database was initially developed to predict the function of marine species using standard microbiological references. This study, however, has attempted to access the application of FAPROTAX in soil environments. We hypothesized that FAPROTAX was compatible with terrestrial ecosystems. The potential use of FAPROTAX to assign ecological functions of soil bacteria was investigated using meta-analysis and our newly designed experiments. Soil samples from two major terrestrial ecosystems, including agricultural land and forest, were collected. Bacterial taxonomy was analyzed using Illumina sequencing of the 16S rRNA gene and ecological functions of the soil bacteria were assigned by FAPROTAX. The presence of all functionally assigned OTUs (Operation Taxonomic Units) in soil were manually checked using peer-reviewed articles as well as standard microbiology books. Overall, we showed that sample source was not a predominant factor that limited the application of FAPROTAX, but poor taxonomic identification was. The proportion of assigned taxa between aquatic and non-aquatic ecosystems was not significantly different (p > 0.05). There were strong and significant correlations (σ = 0.90–0.95, p < 0.01) between the number of OTUs assigned to genus or order level and the number of functionally assigned OTUs. After manual verification, we found that more than 97% of the FAPROTAX assigned OTUs have previously been detected and potentially performed functions in agricultural and forest soils. We further provided information regarding taxa capable of N-fixation, P and K solubilization, which are three main important elements in soil systems and can be integrated with FAPROTAX to increase the proportion of functionally assigned OTUs. Consequently, we concluded that FAPROTAX can be used for a fast-functional screening or grouping of 16S derived bacterial data from terrestrial ecosystems and its performance could be enhanced through improving the taxonomic and functional reference databases.
Collapse
|