1
|
Mao C, Zhao K, Loong CFJ, Song D, Lisak G. A New Discovery on the Potential Stability of Ion-Selective Membranes: The Poison from Tetrahydrofuran. ACS Sens 2024; 9:3870-3876. [PMID: 39115965 DOI: 10.1021/acssensors.4c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Ion-selective electrodes (ISEs) have widespread use in the fields of clinical and environmental analyses. Tetrahydrofuran (THF) is the most used solvent for the preparation of modern ISEs, equipped with ion-selective membranes (ISMs). Until now, the influence of impurities in THF toward potentiometric instability of ion-selective membrane based ISEs was probably associated with the presence of either residual water or peroxide. To address this issue, most literature recommends redistilling THF prior to use in the preparation of the potentiometric membranes. Current study reveals that the actual THF impurity that is responsible for potential instability in the ISM includes products from the oxidation of THF, which contains the hydroxyl group and possibly carbonyl group with a boiling point of above 200 °C. The density functional theory calculation supported pathway of the chemical reaction of THF oxidation, hence, the chemical structure of the uncertain impurities was predicted. The underlying reason for the deteriorating potential stability of the ISEs is proposed as the significant hydrophilicity of these impurities that affect the partitioning of the ion sensing components in the membrane, thus enhancing the leaching of the membrane components from the membrane phase. This finding explains why redistillation of aged THF is advised.
Collapse
Affiliation(s)
- Canwei Mao
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 Singapore
| | - Ke Zhao
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Cyrus Foo Jit Loong
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 Singapore
| | - Dean Song
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
2
|
Liu S, Gao PF, Li S, Fu H, Wang L, Dai Y, Fu M. A review of the recent progress in biotrickling filters: packing materials, gases, micro-organisms, and CFD. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125398-125416. [PMID: 38012483 DOI: 10.1007/s11356-023-31004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Organic pollutants in the air have serious consequences on both human health and the environment. Among the various methods for removing organic pollution gas, biotrickling filters (BTFs) are becoming more and more popular due to their cost-effective advantages. BTF can effectively degrade organic pollutants without producing secondary pollutants. In the current research on the removal of organic pollutants by BTF, improving the performance of BTF has always been a research hotspot. Researchers have conducted studies from different aspects to improve the removal performance of BTF for organic pollutants. Including research on the performance of BTF using different packing materials, research on the removal of various mixed pollutant gases by BTF, research on microbial communities in BTF, and other studies that can improve the performance of BTF. Moreover, computational fluid dynamics (CFD) was introduced to study the microscopic process of BTF removal of organic pollutants. CFD is a simulation tool widely used in aerospace, automotive, and industrial production. In the study of BTF removal of organic pollutants, CFD can simulate the fluid movement, mass transfer process, and biodegradation process in BTF in a visual way. This review will summarize the development of BTFs from four aspects: packing materials, mixed gases, micro-organisms, and CFD, in order to provide a reference and direction for the future optimization of BTFs.
Collapse
Affiliation(s)
- Shuaihao Liu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Pan-Feng Gao
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China.
| | - Shubiao Li
- Xiamen Lian Chuang Dar Technology Co., Ltd., Xiamen, 361000, China
| | - Haiyan Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Liyong Wang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yuan Dai
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Muxing Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
3
|
Mello TP, Barcellos IC, Aor AC, Branquinha MH, Santos ALS. Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance. J Fungi (Basel) 2022; 8:1172. [PMID: 36354939 PMCID: PMC9693033 DOI: 10.3390/jof8111172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments.
Collapse
Affiliation(s)
- Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Iuri C. Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
4
|
Yin Y, Wu H, Jiang Z, Jiang J, Lu Z. Degradation of Triclosan in the Water Environment by Microorganisms: A Review. Microorganisms 2022; 10:1713. [PMID: 36144315 PMCID: PMC9505857 DOI: 10.3390/microorganisms10091713] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Triclosan (TCS), a kind of pharmaceuticals and personal care products (PPCPs), is widely used and has had a large production over years. It is an emerging pollutant in the water environment that has attracted global attention due to its toxic effects on organisms and aquatic ecosystems, and its concentrations in the water environment are expected to increase since the COVID-19 pandemic outbreak. Some researchers found that microbial degradation of TCS is an environmentally sustainable technique that results in the mineralization of large amounts of organic pollutants without toxic by-products. In this review, we focus on the fate of TCS in the water environment, the diversity of TCS-degrading microorganisms, biodegradation pathways and molecular mechanisms, in order to provide a reference for the efficient degradation of TCS and other PPCPs by microorganisms.
Collapse
Affiliation(s)
- Yiran Yin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenghai Jiang
- Zhejiang Haihe Environmental Technology Co., Ltd., Jinhua 321012, China
| | - Jingwei Jiang
- Zhejiang Haihe Environmental Technology Co., Ltd., Jinhua 321012, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
A multicomponent THF hydroxylase initiates tetrahydrofuran degradation in Cupriavidus metallidurans ZM02. Appl Environ Microbiol 2022; 88:e0188021. [PMID: 35108100 DOI: 10.1128/aem.01880-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetrahydrofuran (THF) has been recognized as a water contaminant because of its human carcinogenicity, extensive use, and widespread distribution. Previously reported multicomponent monooxygenases (MOs) involved in THF degradation were highly conserved, and all of them were from Gram-positive bacteria. In this study, a novel THF-degrading gene cluster (dmpKLMNOP) encoding THF hydroxylase was identified on the chromosome of a newly isolated Gram-negative THF-degrading bacterium, Cupriavidus metallidurans ZM02, and functionally characterized. Transcriptome sequencing and RT-qPCR demonstrated that the expression of dmpKLMNOP was upregulated during the growth of strain ZM02 on THF or phenol. The deletion of oxygenase alpha or beta subunit or the reductase component disrupted the degradation of THF but did not affect the utilization of its hydroxylated product 2-hydroxytetrahydrofuran. Cupriavidus pinatubonensis JMP134 heterologously expressing dmpKLMNOP from strain ZM02 could grow on THF, indicating that the THF hydroxylase DmpZM02KLMNOP is responsible for the initial degradation of THF. Furthermore, the THF and phenol oxidation activities of crude enzyme extracts were detected, and the highest THF and phenol catalytic activities were 1.38±0.24 μmol min-1 mg-1 and 1.77±0.37 μmol min-1 mg-1, respectively, with the addition of NADPH and Fe2+. The characterization of THF hydroxylase associated with THF degradation enriches our understanding of THF-degrading gene diversity and provides a novel potential enzyme for the bioremediation of THF-containing pollutants. IMPORTANCE Multicomponent MOs catalyzing the initial hydroxylation of THF are vital rate-limiting enzymes in the THF degradation pathway. Previous studies of THF degradation gene clusters have focused on Gram-positive bacteria, and the molecular mechanism of THF degradation in Gram-negative bacteria has rarely been reported. In this study, a novel THF hydroxylase encoded by dmpKLMNOP in strain ZM02 was identified to be involved in both THF and phenol degradation. Our findings provide new insights into the THF-degrading gene cluster and enzymes in Gram-negative bacteria.
Collapse
|
6
|
Huang H, Qi M, Liu Y, Wang H, Wang X, Qiu Y, Lu Z. Thiamine-Mediated Cooperation Between Auxotrophic Rhodococcus ruber ZM07 and Escherichia coli K12 Drives Efficient Tetrahydrofuran Degradation. Front Microbiol 2020; 11:594052. [PMID: 33362743 PMCID: PMC7758286 DOI: 10.3389/fmicb.2020.594052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Tetrahydrofuran (THF) is a universal solvent widely used in the synthesis of chemicals and pharmaceuticals. As a refractory organic contaminant, it can only be degraded by a small group of microbes. In this study, a thiamine auxotrophic THF-degrading bacterium, Rhodococcus ruber ZM07, was isolated from an enrichment culture H-1. It was cocultured with Escherichia coli K12 (which cannot degrade THF but can produce thiamine) and/or Escherichia coli K12ΔthiE (which can neither degrade THF nor produce thiamine) with or without exogenous thiamine. This study aims to understand the interaction mechanisms between ZM07 and K12. We found that K12 accounted for 30% of the total when cocultured and transferred with ZM07 in thiamine-free systems; in addition, in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system without thiamine, K12ΔthiE disappeared in the 8th transfer, while K12 could still stably exist (the relative abundance remained at approximately 30%). The growth of K12 was significantly inhibited in the thiamine-rich system. Its proportion was almost below 4% after the fourth transfer in both the two-strain (ZM07 and K12) and three-strain (ZM07, K12, and K12ΔthiE) systems; K12ΔthiE’s percentage was higher than K12’s in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system with exogenous thiamine, and both represented only a small proportion (less than 1% by the fourth transfer). The results of the coculture of K12 and K12ΔthiE in thiamine-free medium indicated that intraspecific competition between them may be one of the main reasons for the extinction of K12ΔthiE in the three-strain (ZM07, K12, and K12ΔthiE) system without exogenous thiamine. Furthermore, we found that ZM07 could cooperate with K12 through extracellular metabolites exchanges without physical contact. This study provides novel insight into how microbes cooperate and compete with one another during THF degradation.
Collapse
Affiliation(s)
- Hui Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Minbo Qi
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiyang Qiu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|