1
|
Chen X, Li Z, Zhang Z, Nan J, Zhao G, Ho SH, Liang B, Wang A. How Pseudomonas conducts reductive dechlorination of 2,4,6-trichlorophenol: Insights into metabolic performance and organohalide respiration process. WATER RESEARCH 2025; 273:123014. [PMID: 39719803 DOI: 10.1016/j.watres.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
Organohalide-respiring bacteria (OHRB) play a key role in facilitating the detoxification of halogenated organics, but their slow growth and harsh growth conditions often limit their application in field remediation. In this study, we investigated the metabolic performance and organohalide respiration process of a non-obligate OHRB, Pseudomonas sp. CP-1, demonstrating favorable anaerobic reductive dechlorination ability of 2,4,6-trichlorophenol to 4-chlorophenol with a removal rate constant (k) of 0.46 d-1. Due to its facultative anaerobic nature, strain CP-1 exhibited unique metabolic properties. In aerobic conditions, strain CP-1 preferentially utilized oxygen for rapid proliferation, and anaerobic reductive dechlorination was initiated once the oxygen was depleted. The aerobic proliferation facilitated the subsequent reductive dechlorination process. Through multi-tool analysis, a modified tricarboxylic acid cycle was proposed to be linked to organohalide respiration when acetate served as the sole carbon source. A predictive model for the electron transport chain (ETC) for reductive dechlorination was constructed, with complex Ⅰ, complex Ⅱ, ubiquinone, complex Fix (flavoprotein), and reductive dehalogenase (RDase) as the major components. A specific RDase facilitating reductive dechlorination was identified. It shared a 64.35 % amino acid similarity with biochemically characterized RDases and was designated CprA-2. Its ortho-dechlorination catalytic process was proposed through molecular docking. The discovery of highly adaptable Pseudomonas with favorable dechlorination activity and the elucidation of its metabolic properties provide valuable insights into the understanding of non-obligate OHRBs and their application regulation.
Collapse
Affiliation(s)
- Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Zimeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Guanshu Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| |
Collapse
|
2
|
Lu Y, Lu F, Zhang J, Tang Q, Yang D, Liu Y. Understanding the sources, function, and irreplaceable role of cobamides in organohalide-respiring bacteria. Front Microbiol 2024; 15:1435674. [PMID: 39139376 PMCID: PMC11321594 DOI: 10.3389/fmicb.2024.1435674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Halogenated organic compounds are persistent pollutants that pose a serious threat to human health and the safety of ecosystems. Cobamides are essential cofactors for reductive dehalogenases (RDase) in organohalide-respiring bacteria (OHRB), which catalyze the dehalogenation process. This review systematically summarizes the impact of cobamides on organohalide respiration. The catalytic processes of cobamide in dehalogenation processes are also discussed. Additionally, we examine OHRB, which cannot synthesize cobamide and must obtain it from the environment through a salvage pathway; the co-culture with cobamide producer is more beneficial and possible. This review aims to help readers better understand the importance and function of cobamides in reductive dehalogenation. The presented information can aid in the development of bioremediation strategies.
Collapse
Affiliation(s)
- Yongfeng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fancheng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jian Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qianwei Tang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Dan Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Guangxi Yuhuacheng Environmental Protection Technology Co., Nanning, China
| | - Yaqing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
4
|
Ng TL, Silver PA. Sustainable B 12-Dependent Dehalogenation of Organohalides in E. coli. ACS Chem Biol 2024; 19:380-391. [PMID: 38254247 DOI: 10.1021/acschembio.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microbial bioremediation can provide an environmentally friendly and scalable solution to treat contaminated soil and water. However, microbes have yet to optimize pathways for degrading persistent anthropogenic pollutants, in particular organohalides. In this work, we first expand our repertoire of enzymes useful for bioremediation. By screening a panel of cobalamin (B12)-dependent reductive dehalogenases, we identified previously unreported enzymes that dechlorinate perchloroethene and regioselectively deiodinate the thyroidal disruptor 2,4,6-triiodophenol. One deiodinase, encoded by the animal-associated anaerobe Clostridioides difficile, was demonstrated to dehalogenate the naturally occurring metabolites L-halotyrosines. In cells, several combinations of ferredoxin oxidoreductase and flavodoxin extract and transfer low-potential electrons from pyruvate to drive reductive dehalogenation without artificial reductants and mediators. This work provides new insights into a relatively understudied family of B12-dependent enzymes and sets the stage for engineering synthetic pathways for degrading unnatural small molecule pollutants.
Collapse
Affiliation(s)
- Tai L Ng
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute of Biologically-Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute of Biologically-Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Fisher K, Halliwell T, Payne KAP, Ragala G, Hay S, Rigby SEJ, Leys D. Efficient NADPH-dependent dehalogenation afforded by a self-sufficient reductive dehalogenase. J Biol Chem 2023; 299:105086. [PMID: 37495113 PMCID: PMC10463259 DOI: 10.1016/j.jbc.2023.105086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Reductive dehalogenases are corrinoid and iron-sulfur cluster-containing enzymes that catalyze the reductive removal of a halogen atom. The oxygen-sensitive and membrane-associated nature of the respiratory reductive dehalogenases has hindered their detailed kinetic study. In contrast, the evolutionarily related catabolic reductive dehalogenases are oxygen tolerant, with those that are naturally fused to a reductase domain with similarity to phthalate dioxygenase presenting attractive targets for further study. We present efficient heterologous expression of a self-sufficient catabolic reductive dehalogenase from Jhaorihella thermophila in Escherichia coli. Combining the use of maltose-binding protein as a solubility-enhancing tag with the btuCEDFB cobalamin uptake system affords up to 40% cobalamin occupancy and a full complement of iron-sulfur clusters. The enzyme is able to efficiently perform NADPH-dependent dehalogenation of brominated and iodinated phenolic compounds, including the flame retardant tetrabromobisphenol, under both anaerobic and aerobic conditions. NADPH consumption is tightly coupled to product formation. Surprisingly, corresponding chlorinated compounds only act as competitive inhibitors. Electron paramagnetic resonance spectroscopy reveals loss of the Co(II) signal observed in the resting state of the enzyme under steady-state conditions, suggesting accumulation of Co(I)/(III) species prior to the rate-limiting step. In vivo reductive debromination activity is readily observed, and when the enzyme is expressed in E. coli strain W, supports growth on 3-bromo-4-hydroxyphenylacetic as a sole carbon source. This demonstrates the potential for catabolic reductive dehalogenases for future application in bioremediation.
Collapse
Affiliation(s)
- Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tom Halliwell
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Karl A P Payne
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Gabriel Ragala
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Stephen E J Rigby
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Guo HB, Varaljay VA, Kedziora G, Taylor K, Farajollahi S, Lombardo N, Harper E, Hung C, Gross M, Perminov A, Dennis P, Kelley-Loughnane N, Berry R. Accurate prediction by AlphaFold2 for ligand binding in a reductive dehalogenase and implications for PFAS (per- and polyfluoroalkyl substance) biodegradation. Sci Rep 2023; 13:4082. [PMID: 36906658 PMCID: PMC10008544 DOI: 10.1038/s41598-023-30310-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of AlphaFold2 (AF2), it is unclear how AF2 models accommodate for ligand binding. Here, we start with a protein sequence from Acidimicrobiaceae TMED77 (T7RdhA) with potential for catalyzing the degradation of per- and polyfluoroalkyl substances (PFASs). AF2 models and experiments identified T7RdhA as a corrinoid iron-sulfur protein (CoFeSP) which uses a norpseudo-cobalamin (BVQ) cofactor and two Fe4S4 iron-sulfur clusters for catalysis. Docking and molecular dynamics simulations suggest that T7RdhA uses perfluorooctanoic acetate (PFOA) as a substrate, supporting the reported defluorination activity of its homolog, A6RdhA. We showed that AF2 provides processual (dynamic) predictions for the binding pockets of ligands (cofactors and/or substrates). Because the pLDDT scores provided by AF2 reflect the protein native states in complex with ligands as the evolutionary constraints, the Evoformer network of AF2 predicts protein structures and residue flexibility in complex with the ligands, i.e., in their native states. Therefore, an apo-protein predicted by AF2 is actually a holo-protein awaiting ligands.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Vanessa A Varaljay
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Gary Kedziora
- GDIT Inc., Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Kimberly Taylor
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Sanaz Farajollahi
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Nina Lombardo
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Eric Harper
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Chia Hung
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Marie Gross
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- University of Dayton, Dayton, OH, 45469, USA
| | - Alexander Perminov
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- Miami University, Oxford, OH, 45056, USA
| | - Patrick Dennis
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Nancy Kelley-Loughnane
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA.
| | - Rajiv Berry
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA.
| |
Collapse
|
7
|
Halliwell T, Fisher K, Rigby SEJ, Leys D. Heterologous production and biophysical characterization of catabolic Nitratireductor pacificus pht-3B reductive dehalogenase. Methods Enzymol 2022; 668:327-347. [PMID: 35589200 DOI: 10.1016/bs.mie.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reductive dehalogenases provide a possible route to the biotechnological remediation of widespread anthropogenic environmental organohalide contamination. These bacterial enzymes employ cobalamin and an internal electron transfer chain of two [4Fe-4S] clusters to remove halide ions from organohalides, leaving an organic molecule more amenable to further transformations. Detailed protocols for the cloning, heterologous expression, purification, crystallization and characterization of the catabolic dehalogenase from Nitratireductor pacificus pht-3B (NpRdhA) are presented, together with insight into enzyme turnover, substrate selectivity and the use of electron paramagnetic resonance (EPR) spectroscopy as an active site probe.
Collapse
Affiliation(s)
- Tom Halliwell
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Karl Fisher
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Stephen E J Rigby
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - David Leys
- School of Chemistry, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|