1
|
Guo W, Zhou M, Li F, Neves ALA, Ma T, Bi S, Wang W, Long R, Guan LL. Seasonal stability of the rumen microbiome contributes to the adaptation patterns to extreme environmental conditions in grazing yak and cattle. BMC Biol 2024; 22:240. [PMID: 39443951 PMCID: PMC11515522 DOI: 10.1186/s12915-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The rumen microbiome plays an essential role in maintaining ruminants' growth and performance even under extreme environmental conditions, however, which factors influence rumen microbiome stability when ruminants are reared in such habitats throughout the year is unclear. Hence, the rumen microbiome of yak (less domesticated) and cattle (domesticated) reared on the Qinghai-Tibetan Plateau through the year were assessed to evaluate temporal changes in their composition, function, and stability. RESULTS Rumen fermentation characteristics and pH significantly shifted across seasons in both cattle and yak, but the patterns differed between the two ruminant species. Ruminal enzyme activity varied with season, and production of xylanase and cellulase was greater in yak compared to cattle in both fall and winter. The rumen bacterial community varied with season in both yak and cattle, with higher alpha diversity and similarity (beta diversity) in yak than cattle. The diversity indices of eukaryotic community did not change with season in both ruminant species, but higher similarity was observed in yak. In addition, the similarity of rumen microbiome functional community was higher in yak than cattle across seasons. Moreover, yak rumen microbiome encoded more genes (GH2 and GH3) related to cellulose and hemicellulose degradation compared to cattle, and a new enzyme family (GH160) gene involved in oligosaccharides was uniquely detected in yak rumen. The season affected microbiome attenuation and buffering values (stability), with higher buffering value in yak rumen microbiome than cattle. Positive correlations between antimicrobial resistance gene (dfrF) and CAZyme family (GH113) and microbiome stability were identified in yak, but such relationship was negatively correlated in cattle. CONCLUSIONS The findings of the potential of cellulose degradation, the relationship between rumen microbial stability and the abundance of functional genes varied differently across seasons and between yak and cattle provide insight into the mechanisms that may underpin their divergent adaptation patterns to the harsh climate of the Qinghai-Tibetan Plateau. These results lay a solid foundation for developing strategies to maintain and improve rumen microbiome stability and dig out the potential candidates for manufacturing lignocellulolytic enzymes in the yak rumen to enhance ruminants' performance under extreme environmental conditions.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - André Luis Alves Neves
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, 1870, Denmark
| | - Tao Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sisi Bi
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weiwei Wang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
2
|
Du X, Zhou L, Li Y, Zhang F, Wang L, Yao J, Chen X, Liu S, Cao Y. Effects of yak rumen anaerobic fungus Orpinomyces sp. YF3 fermented on in vitro wheat straw fermentation and microbial communities in dairy goat rumen fluid, with and without fungal flora. J Anim Physiol Anim Nutr (Berl) 2024; 108:1312-1325. [PMID: 38685575 DOI: 10.1111/jpn.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Rumen fungi play an essential role in the breakdown of dietary fibrous components, facilitating the provision of nutrients and energy to the host animals. This study investigated the fermentation characteristics and effects on rumen microbiota of yak rumen anaerobic fungus Orpinomyces sp. YF3 in goat rumen fluid, both with and without fungal flora, utilizing anaerobic fermentation bottles. Crushed and air-dried wheat straw served as the fermentation substrate, and cycloheximide was used to eradicate microorganisms from the rumen fluid of dairy goats. The experiment compromised four treatment groups (2×2 factorial design): control (C); yak fungus group (CF, Orpinomyces sp. YF3); goat fungi eliminated group (CA, antibiotic: 0.25 mg/mL cycloheximide); goat fungi eliminated+yak fungus group (CAF). Each treatment had six replicates. Fermentation characteristics and microbial composition of the fermentation media were analyzed using one-way analysis of variance and high-throughput sequencing technology. The findings revealed that in the Orpinomyces sp. YF3 addition group (CF and CAF groups), there were significant increases in ammonia nitrogen concentration by 70%, total volatile fatty acids (VFA) by 53%, as well as acetate, isobutyrate, and valerate concentrations, and the ratio of acetate to propionate (p < 0.05), while the propionate proportion declined by 13%, alongside a reduction of butyrate concentration (p < 0.05). Similarly, in the CF and CAF groups, there were a notable increase in the relative abundance of Bacteroidota, Synergistota, Desulfobacterota, Actinobacteria, and Fusobacteriota, alongside a decrease in the relative abundance of Fibrobacterota and Proteobacteria (p < 0.05). Bacteria exhibiting increased relative abundance were positively correlated with the activity of carboxymethyl cellulase and avicelase, total VFA concentration, and acetate proportion, while showing a negatively correlation with propionate proportion. In conclusion, supplementing rumen fermentation media with yak rumen anaerobic fungus Orpinomyces sp. YF3 led to an increase in bacteria associated with fibre degradation and acetic acid production, a decrease in propionate-producing bacteria, enhanced the activity of plant cell wall degrading enzymes, and promoted cellulose degradation, ultimately elevating total VAF concentration and acetate proportion. This presents a novel approach to enhance roughage utilization in ruminants.
Collapse
Affiliation(s)
- Xueer Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linlin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinghua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Meili CH, TagElDein MA, Jones AL, Moon CD, Andrews C, Kirk MR, Janssen PH, J. Yeoman C, Grace S, Borgogna JLC, Foote AP, Nagy YI, Kashef MT, Yassin AS, Elshahed MS, Youssef NH. Diversity and community structure of anaerobic gut fungi in the rumen of wild and domesticated herbivores. Appl Environ Microbiol 2024; 90:e0149223. [PMID: 38299813 PMCID: PMC10880628 DOI: 10.1128/aem.01492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
The rumen houses a diverse community that plays a major role in the digestion process in ruminants. Anaerobic gut fungi (AGF) are key contributors to plant digestion in the rumen. Here, we present a global amplicon-based survey of the rumen AGF mycobiome by examining 206 samples from 15 animal species, 15 countries, and 6 continents. The rumen AGF mycobiome was highly diverse, with 81 out of 88 currently recognized AGF genera or candidate genera identified. However, only six genera (Neocallimastix, Orpinomyces, Caecomyces, Cyllamyces, NY9, and Piromyces) were present at >4% relative abundance. AGF diversity was higher in members of the families Antilocapridae and Cervidae compared to Bovidae. Community structure analysis identified a pattern of phylosymbiosis, where host family (10% of total variance) and species (13.5%) partially explained the rumen mycobiome composition. As well, diet composition (9%-19%), domestication (11.14%), and biogeography (14.1%) also partially explained AGF community structure; although sampling limitation, geographic range restrictions, and direct association between different factors hindered accurate elucidation of the relative contribution of each factor. Pairwise comparison of rumen and fecal samples obtained from the same subject (n = 13) demonstrated greater diversity and inter-sample variability in rumen versus fecal samples. The genera Neocallimastix and Orpinomyces were present in higher abundance in rumen samples, while Cyllamyces and Caecomyces were enriched in fecal samples. Comparative analysis of global rumen and feces data sets revealed a similar pattern. Our results provide a global view of AGF community in the rumen and identify patterns of AGF variability between rumen and feces in herbivores Gastrointestinal (GI) tract.IMPORTANCERuminants are highly successful and economically important mammalian suborder. Ruminants are herbivores that digest plant material with the aid of microorganisms residing in their GI tract. In ruminants, the rumen compartment represents the most important location where microbially mediated plant digestion occurs, and is known to house a bewildering array of microbial diversity. An important component of the rumen microbiome is the anaerobic gut fungi (AGF), members of the phylum Neocallimastigomycota. So far, studies examining AGF diversity have mostly employed fecal samples, and little is currently known regarding the identity of AGF residing in the rumen compartment, factors that impact the observed patterns of diversity and community structure of AGF in the rumen, and how AGF communities in the rumen compare to AGF communities in feces. Here, we examined the rumen AGF diversity using an amplicon-based survey targeting a wide range of wild and domesticated ruminants (n = 206, 15 different animal species) obtained from 15 different countries. Our results demonstrate that while highly diverse, no new AGF genera were identified in the rumen mycobiome samples examined. Our analysis also indicate that animal host phylogeny, diet, biogeography, and domestication status could play a role in shaping AGF community structure. Finally, we demonstrate that a greater level of diversity and higher inter-sample variability was observed in rumen compared to fecal samples, with two genera (Neocallimastix and Orpinomyces) present in higher abundance in rumen samples, and two others (Cyllamyces and Caecomyces) enriched in fecal samples. Our results provide a global view of the identity, diversity, and community structure of AGF in ruminants, elucidate factors impacting diversity and community structure of the rumen mycobiome, and identify patterns of AGF community variability between the rumen and feces in the herbivorous GI tract.
Collapse
Affiliation(s)
- Casey H. Meili
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Moustafa A. TagElDein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Adrienne L. Jones
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Christina D. Moon
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Catherine Andrews
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Michelle R. Kirk
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H. Janssen
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Carl J. Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Savannah Grace
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | | | - Andrew P. Foote
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yosra I. Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona T. Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aymen S. Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Liang J, Zhang P, Zhang R, Chang J, Chen L, Wang G, Tian Y, Zhang G. Response of rumen microorganisms to pH during anaerobic hydrolysis and acidogenesis of lignocellulose biomass. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:476-486. [PMID: 38128366 DOI: 10.1016/j.wasman.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Rumen microorganisms can efficiently degrade lignocellulosic wastes to produce volatile fatty acids (VFAs). pH is a key factor in controlling the type and yield of VFAs by affecting the microorganisms involved in rumen fermentation. However, the effects of different pH on rumen microbial diversity, communities, and mechanisms are unclear. In this study, the hydrolysis and acidogenesis of corn straw and diversity, communities, and mechanisms of rumen microorganisms were explored at different initial pHs. Results showed that the highest hemicellulose, cellulose, and lignin degradation efficiency of corn straw was 55.2 %, 38.3 %, and 7.01 %, respectively, and VFA concentration was 10.2 g/L at pH 7.0. Low pH decreased the bacterial diversity and increased the fungal diversity. Rumen bacteria and fungi had different responses to initial pHs, and the community structure of bacteria and fungi had obviously differences at the genus level. The core genera Succiniclasticum, Treponema, and Neocallimastix relative abundance at initial pH 7.0 samples were significantly higher than that at lower initial pHs, reaching 6.01 %, 1.61 %, and 5.35 %, respectively. The bacterial network was more complex than that of fungi. pH, acetic acid, and propionic acid were the main factors influencing the bacterial and fungal community structure. Low pH inhibited the expression of functional genes related to hydrolysis and acidogenesis, explaining the lower hydrolysis and acidogenesis efficiency. These findings will provide a better understanding for rumen fermentation to produce VFAs.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Gongting Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
5
|
Sanchez D, Zapata C, Romero Y, Flores-Huarco NH, Oros O, Alvarado W, Quilcate C, Guevara-Alvarado HM, Estrada R, Coila P. Parasitism-Induced Changes in Microbial Eukaryotes of Peruvian Alpaca Gastrointestinal Tract. Life (Basel) 2024; 14:187. [PMID: 38398696 PMCID: PMC10890412 DOI: 10.3390/life14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Alpacas, important genetic resources in the Andean region of Peru, are vulnerable to diarrhea caused by pathogenic parasites such as Eimeria lamae and Giardia sp., which can be fatal, especially in neonates, due to their physiological immaturity and limited adaptability. The study investigated the diversity and abundance of intestinal fungi and protists in alpacas infected with Eimeria lamae and Giardia sp. compared to healthy alpacas. A total of 19 alpacas, aged between one and two months, were included. They were divided into two groups, one with pathological conditions (nine) and the other healthy (ten). Parasitological analyses for the detection of parasites and subsequent molecular analysis were performed on the collected fecal samples. The results revealed a greater diversity and abundance of protists in infected alpacas in comparison with healthy alpacas, while the fungal composition did not show significant changes. Therefore, parasitic infections affect the protist component of the alpaca gut microbiota. Also, it was observed that Blastocystis was identified in all healthy alpacas, serving as a possible marker of the health of the intestinal microbiota; in addition, Prussia and Pichia are beneficial fungi that help control diseases. This groundbreaking study in neonatal alpacas is the first to explore potential changes in the intestinal microbiota during an infectious state, underscoring the importance of further research to comprehend its effects on alpaca health and immune responses.
Collapse
Affiliation(s)
- Diana Sanchez
- Unidad de Post Grado de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (D.S.); (N.H.F.-H.)
| | - Celso Zapata
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (C.Z.); (O.O.)
| | - Yolanda Romero
- Instituto de Investigación en Bioinformática y Bioestadistica (BIOINFO), Av. Raúl Ferrero 21, Lima 15024, Peru;
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru;
| | - Nils H. Flores-Huarco
- Unidad de Post Grado de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (D.S.); (N.H.F.-H.)
| | - Oscar Oros
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (C.Z.); (O.O.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.); (H.M.G.-A.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru;
| | - Hada M. Guevara-Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.); (H.M.G.-A.)
| | - Richard Estrada
- Instituto de Investigación en Bioinformática y Bioestadistica (BIOINFO), Av. Raúl Ferrero 21, Lima 15024, Peru;
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru;
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno 21001, Peru; (C.Z.); (O.O.)
| |
Collapse
|
6
|
Wang R, Huang D, Chen C, Song D, Peng H, He M, Huang X, Huang Z, Wang B, Lan H, Tang P. From transients to permanent residents: the existence of obligate aerobic microorganisms in the goat rumen. Front Microbiol 2024; 15:1325505. [PMID: 38318339 PMCID: PMC10839086 DOI: 10.3389/fmicb.2024.1325505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
The rumen serves as a complex ecosystem, harboring diverse microbial communities that play crucial ecological roles. Because previous studies have predominantly focused on anaerobic microorganisms, limited attention has been given to aerobic microorganisms in the goat rumen. This study aims to explore the diversity of aerobic microorganisms in the rumen and understand their niche and ecological roles. Rumen fluid samples were collected from 6 goats at different time points post-morning feeding. pH, NH3-N, and volatile fatty acid (TVFA) concentrations were measured, while In vitro cultivation of aerobic microorganisms was performed using PDA medium. Internal Transcribed Spacer (ITS) and 16S sequencing unveiled microbial diversity within the rumen fluid samples. Evidence of obligate aerobic microorganisms in the goat rumen suggests their potential contribution to ecological functionalities. Significantly, certain aerobic microorganisms exhibited correlations with TVFA levels, implying their involvement in TVFA metabolism. This study provides evidence of the existence and potential ecological roles of obligate aerobic microorganisms in the goat rumen. The findings underscore the significance of comprehensively deciphering goat rumen microbial communities and their interactions, with aerobes regarded as permanent residents rather than transients. These insights form a solid foundation for advancing our understanding of the intricate interplay between goat and their aerobic microorganisms in the rumen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ping Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| |
Collapse
|
7
|
Wang R, He S, Huang D, He S, Guo T, Chen T, Peng H, Jiaka L, He M, Chen C, Song D, Huang X, Wu D, Mao H. Differences in composition and diversity of rumen fungi in buffalo fed different diets. Anim Biotechnol 2023; 34:5075-5086. [PMID: 37946542 DOI: 10.1080/10495398.2023.2276974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The rumen is a complex ecosystem containing a variety of fungi, which are crucial for the digestive activities of ruminants. Previous research on rumen fungi has mainly focused on anaerobic fungi, given the rumen's reputation as a mainly anaerobic environment. The objective of this study was to investigate rumen fungal diversity and the presence of aerobic fungi in buffalo fed on different diets. Three adult buffaloes were used as experimental animals. Alfalfa hay, oat hay, whole corn silage, sugarcane shoot silage, fresh king grass, dried rice straw, and five kinds of mixed diets with concentrate to roughage ratios of 20:80, 35:65, 50:50, 65:35, and 80:20 were used as the experimental diets. The experimental animals were fed different diets for 22 days. Rumen fluid was collected from the rumen fistula for ITS (Internal Transcribed Spacer) sequencing 2 h after feeding on the morning of day 22. The results indicate the presence of large quantities of aerobic fungi in the rumen of the buffaloes 2 h after feeding and suggest that Ascomycota and Basidiomycota are the dominant fungal groups under different feeding conditions. The study also identified 62 different fungal types, which showed significant differences among the 11 experimental diets.
Collapse
Affiliation(s)
- Rongjiao Wang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Shichun He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dan Huang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Shaoying He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Taiqing Guo
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Tao Chen
- Animal Husbandry Station, Mangshi, Yunnan, China
| | - Hongen Peng
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Latie Jiaka
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Min He
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Changguo Chen
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Dingzhou Song
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Xiujun Huang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Huaming Mao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Wang RJ, He SC, Huang D, Wu DW, He SY, Guo TQ, Chen CG, Mao HM. Effects of king grass and rice straw hay on apparent digestibility and ruminal microorganisms of buffalo. Anim Biotechnol 2023; 34:1514-1523. [PMID: 35167410 DOI: 10.1080/10495398.2022.2036748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to explore the effects of Rice straw and King grass on apparent digestibility, ruminal bacterial, and fungus composition in buffaloes. Three ruminal fistulated buffaloes were used in a 3 × 2 Latin square design. The dietary treatments were king grass and straw hay. Experimental animals were kept in individual pens and concentrate was offered at 1 kg/d while roughage was fed ad libitum. Each period lasted for 15d, with the first 12d for an adaptation period, followed by a 3-day formal trial period. King grass has higher digestibility of protein. Rice straw has higher digestibility to cellulose. The results showed that when buffaloes were fed king grass and straw, Bacteroidetes were dominant in the rumen normal flora, but firmicutes were not. In addition, the results of this experiment suggest that increasing protein content in diets may be beneficial to increase the relative abundance of Proteobacteria. Similarly, higher dietary fiber content may be beneficial for increasing relative abundance of Prevotella and Staphylococcus. The dominant fungi in ruminal fluid 2 h after ingestion were aerobic fungi. These aerobic fungi most likely entered the rumen with food. Whether and how long aerobic fungi can survive in the rumen needs more research.
Collapse
Affiliation(s)
- Rong-Jiao Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, P.R. China
| | - Shi-Chun He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Dan Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, P.R. China
| | - Dong-Wang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Shao-Ying He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Tai-Qing Guo
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Chang-Guo Chen
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, P.R. China
| | - Hua-Ming Mao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| |
Collapse
|
9
|
Liang J, Chang J, Zhang R, Fang W, Chen L, Ma W, Zhang Y, Yang W, Li Y, Zhang P, Zhang G. Metagenomic analysis reveals the efficient digestion mechanism of corn stover in Angus bull rumen: Microbial community succession, CAZyme composition and functional gene expression. CHEMOSPHERE 2023; 336:139242. [PMID: 37330070 DOI: 10.1016/j.chemosphere.2023.139242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Ruminant rumen is a biological fermentation system that can efficiently degrade lignocellulosic biomass. The knowledge about mechanisms of efficient lignocellulose degradation with rumen microorganisms is still limited. In this study, composition and succession of bacteria and fungi, carbohydrate-active enzymes (CAZymes), and functional genes involved in hydrolysis and acidogenesis were revealed during fermentation in Angus bull rumen via metagenomic sequencing. Results showed that degradation efficiency of hemicellulose and cellulose reached 61.2% and 50.4% at 72 h fermentation, respectively. Main bacterial genera were composed of Prevotella, Butyrivibrio, Ruminococcus, Eubacterium, and Fibrobacter, and main fungal genera were composed of Piromyces, Neocallimastix, Anaeromyces, Aspergillus, and Orpinomyces. Principal coordinates analysis indicated that community structure of bacteria and fungi dynamically changed during 72 h fermentation. Bacterial networks with higher complexity had stronger stability than fungal networks. Most CAZyme families showed a significant decrease trend after 48 h fermentation. Functional genes related to hydrolysis decreased at 72 h, while functional genes involved in acidogenesis did not change significantly. These findings provide a in-depth understanding of mechanisms of lignocellulose degradation in Angus bull rumen, and may guide the construction and enrichment of rumen microorganisms in anaerobic fermentation of waste biomass.
Collapse
Affiliation(s)
- Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenjing Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuehan Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
10
|
Lebuhn M, Podmirseg SM, Baier U. Editorial for Special Issue "Unleashing the Hidden Potential of Anaerobic Fungi". Microorganisms 2023; 11:652. [PMID: 36985225 PMCID: PMC10059939 DOI: 10.3390/microorganisms11030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Anaerobic fungi (AF) of the phylum Neocallimastigomycota are a very peculiar group of microorganisms [...].
Collapse
Affiliation(s)
- Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, 85354 Freising, Germany
| | | | - Urs Baier
- Institute of Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| |
Collapse
|
11
|
Patidar P, Prakash T. Decoding the roles of extremophilic microbes in the anaerobic environments: Past, Present, and Future. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100146. [PMID: 35909618 PMCID: PMC9325894 DOI: 10.1016/j.crmicr.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The inaccessible extreme environments harbor a large majority of anaerobic microbes which remain unknown. Anaerobic microbes are used in a variety of industrial applications. In the future, metagenomic-assisted techniques can be used to identify novel anaerobic microbes from the unexplored extreme environments. Genetic engineering can be used to enhance the efficiency of anaerobic microbes for various processes.
The genome of an organism is directly or indirectly correlated with its environment. Consequently, different microbes have evolved to survive and sustain themselves in a variety of environments, including unusual anaerobic environments. It is believed that their genetic material could have played an important role in the early evolution of their existence in the past. Presently, out of the uncountable number of microbes found in different ecosystems we have been able to discover only one percent of the total communities. A large majority of the microbial populations exists in the most unusual and extreme environments. For instance, many anaerobic bacteria are found in the gastrointestinal tract of humans, soil, and hydrothermal vents. The recent advancements in Metagenomics and Next Generation Sequencing technologies have improved the understanding of their roles in these environments. Presently, anaerobic bacteria are used in various industries associated with biofuels, fermentation, production of enzymes, vaccines, vitamins, and dairy products. This broad applicability brings focus to the significant contribution of their genomes in these functions. Although the anaerobic microbes have become an irreplaceable component of our lives, a major and important section of such anaerobic microbes still remain unexplored. Therefore, it can be said that unlocking the role of the microbial genomes of the anaerobes can be a noteworthy discovery not just for mankind but for the entire biosystem as well.
Collapse
Affiliation(s)
- Pratyusha Patidar
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
- Corresponding author.
| |
Collapse
|
12
|
Abstract
The rumen ecosystem is a complex and dynamic environment, which hosts microorganisms including archaea, bacteria, protozoa, fungi, and viruses. These microorganisms interact with each other, altering the ruminal environment and substrates that will be available for the host digestion and metabolism. Viruses can infect the host and other microorganisms, which can drive changes in microorganisms' lysis rate, substrate availability, nutrient recycling, and population structure. The lysis of ruminal microorganisms' cells by viruses can release enzymes that enhance feedstuff fermentation, which may increase dietary nutrient utilization and feed efficiency. However, negative effects associated to viruses in the gastrointestinal tract have also been reported, in some cases, disrupting the dynamic stability of the ruminal microbiome, which can result in gastrointestinal dysfunctions. Therefore, the objective of this review is to summarize the current knowledge on ruminal virome, their interaction with other components of the microbiome and the effects on animal nutrition.
Collapse
Affiliation(s)
| | - Antonio P. Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Liang J, Fang W, Wang Q, Zubair M, Zhang G, Ma W, Cai Y, Zhang P. Metagenomic analysis of community, enzymes and metabolic pathways during corn straw fermentation with rumen microorganisms for volatile fatty acid production. BIORESOURCE TECHNOLOGY 2021; 342:126004. [PMID: 34583109 DOI: 10.1016/j.biortech.2021.126004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic fermentation of corn straw with rumen microorganisms as inoculum to produce volatile fatty acids (VFAs) is important for biomass valorization. In this study, dynamic variation in bacterial and fungal community composition, carbohydrate-active enzymes (CAZymes) and key functional genes related with VFA production was explored via metagenomic sequencing. Rumen microorganisms efficiently hydrolyzed and acidified corn straw, and VFA concentration reached 8.99 g/L in 72 h. Bacterial and fungal community significantly changed, but the core genera kept stable. Low pH and VFA accumulation were the main factors affecting bacterial and fungal communities. The positive correlations between bacteria were more complex than those between fungi. Most CAZyme abundance significantly decreased after 72 h fermentation, and functional gene abundance participating in VFA generation also decreased. This study provided new insights into dynamic variation of bacteria and fungi during anaerobic ruminal fermentation in vitro, promoting the application of rumen microorganisms in practice.
Collapse
Affiliation(s)
- Jinsong Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Wei Fang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Qingyan Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Muhammad Zubair
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Weifang Ma
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Yajing Cai
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|