1
|
Wang Y, Guo Y, Li C, Su X, Yang M, Li W, Xu H, Li H. Rhizosphere microorganisms mediate ion homeostasis in cucumber seedlings: a new strategy to improve plant salt tolerance. BMC PLANT BIOLOGY 2025; 25:670. [PMID: 40394472 DOI: 10.1186/s12870-025-06699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Soil salinization is a formidable challenge for vegetable production, primarily because of the detrimental effects of ion toxicity. Rhizosphere microorganisms promote plant growth and bolster salt tolerance, but the extent to which microbial communities can increase plant resilience by regulating ion homeostasis under salt stress remains underexplored. The goal of this study was to enrich microbial communities from the rhizosphere of salt-stressed cucumber seedlings and identify their impact on ion balance and plant growth under saline conditions. RESULTS Salt stress induced significant alterations in the composition, structure, and function of the root-associated microbial community. Compared with a 75 mM NaCl treatment alone, inoculation with salt-induced rhizosphere microorganisms (SiRMs) under the same conditions significantly increased the growth of cucumber seedlings; plant height increased by 61.3%, and the fresh weights of the shoots and roots increased by 45.3% and 38.9%, respectively. Moreover, superoxide dismutase (SOD) activity increased by 4.1%, and peroxidase (POD) activity and superoxide anion (O2·-) content decreased by 10.5% and 3.7%, respectively. In the roots, stems, and leaves of cucumber seedlings treated with SiRMs and 75 mM NaCl, the Na+ content was significantly reduced by 15.8%, 18.9%, and 9.7%, respectively. Conversely, the K+ content significantly increased by 32.7%, 16.9%, and 28.8%, respectively. Under salt stress conditions, inoculation with SiRMs significantly increased the rate of Na+ expulsion in the roots of cucumber seedlings by 18.3%, but the K+ expulsion rate decreased by 76.7%. These dynamic changes are attributed to the upregulation of genes such as CsHKT1, CsHAK5, and CsCHX18;4. CONCLUSIONS Enrichment with SiRMs played a pivotal role in maintaining ion homeostasis and significantly enhanced the salt tolerance of cucumber seedlings. These findings highlight the potential for microbial-assisted strategies to mitigate the adverse effects of soil salinity and provide valuable insights into the complex interplay between the microbial community and plant resilience from the perspective of ion balance.
Collapse
Affiliation(s)
- Yaopu Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yu Guo
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Chenglong Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xinyu Su
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Mengxue Yang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Wanyu Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Hongjun Xu
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Hong Li
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
2
|
Dixon MM, Afkairin A, Manter DK, Vivanco J. Rhizosphere Microbiome Co-Occurrence Network Analysis across a Tomato Domestication Gradient. Microorganisms 2024; 12:1756. [PMID: 39338431 PMCID: PMC11434442 DOI: 10.3390/microorganisms12091756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
When plant-available phosphorus (P) is lost from a soil solution, it often accumulates in the soil as a pool of unavailable legacy P. To acquire legacy P, plants employ recovery strategies, such as forming associations with soil microbes. However, the degree to which plants rely on microbial associations for this purpose varies with crop domestication and subsequent breeding. Here, by generating microbial co-occurrence networks, we sought to explore rhizosphere bacterial interactions in low-P conditions and how they change with tomato domestication and breeding. We grew wild tomato, traditional tomato (developed circa 1900), and modern tomato (developed circa 2020) in high-P and low-P soil throughout their vegetative developmental stage. Co-occurrence network analysis revealed that as the tomatoes progressed along the stages of domestication, the rhizosphere microbiome increased in complexity in a P deficit. However, with the addition of P fertilizer, the wild tomato group became more complex, surpassing the complexity of traditional and modern tomato, suggesting a high degree of responsiveness in the rhizosphere microbiome to P fertilizer by wild tomato relatives. By illustrating these changing patterns of network complexity in the tomato rhizosphere microbiome, we can further understand how plant domestication and breeding have shaped plant-microbe interactions.
Collapse
Affiliation(s)
- Mary M Dixon
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Antisar Afkairin
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel K Manter
- United States Department of Agriculture-Agricultural Research Service, Soil Management and Sugar Beet Research, Fort Collins, CO 80526, USA
| | - Jorge Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Wu X, Yang F, Zhang J, Gao F, Hu YC, Yang K, Wang P. Biochar's role in improving pakchoi quality and microbial community structure in rhizosphere soil. PeerJ 2024; 12:e16733. [PMID: 38515457 PMCID: PMC10956520 DOI: 10.7717/peerj.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/07/2023] [Indexed: 03/23/2024] Open
Abstract
Background Biochar amendments enhance crop productivity and improve agricultural quality. To date, studies on the correlation between different amounts of biochar in pakchoi (Brassica campestris L.) quality and rhizosphere soil microorganisms are limited, especially in weakly alkaline soils. The experiment was set up to explore the effect of different concentrations of biochar on vegetable quality and the correlation between the index of quality and soil bacterial community structure changes. Methods The soil was treated in the following ways via pot culture: the blank control (CK) without biochar added and with biochar at different concentrations of 1% (T1), 3% (T2), 5% (T3), and 7% (T4). Here, we investigatedthe synergistic effect of biochar on the growth and quality of pakchoi, soil enzymatic activities, and soil nutrients. Microbial communities from pakchoi rhizosphere soil were analyzed by Illumina MiSeq. Results The results revealed that adding 3% biochar significantly increased plant height, root length, and dry weight of pakchoi and increased the contents of soluble sugars, soluble proteins, Vitamin C (VC), cellulose, and reduced nitrate content in pakchoi leaves. Meanwhile, soil enzyme activities and available nutrient content in rhizosphere soil increased. This study demonstrated that the the microbial community structure of bacteria in pakchoi rhizosphere soil was changed by applying more than 3% biochar. Among the relatively abundant dominant phyla, Gemmatimonadetes, Anaerolineae, Deltaproteobacteria and Verrucomicrobiae were reduced, and Alphaproteobacteria, Gammaproteobacteria, Bacteroidia, and Acidimicrobiia relative abundance increased. Furthermore, adding 3% biochar reduced the relative abundance of Gemmatimonas and increased the relative abundances of Ilumatobacter, Luteolibacter, Lysobacter, Arthrobacter, and Mesorhizobium. The nitrate content was positively correlated with the abundance of Gemmatimonadetes, and the nitrate content was significantly negatively correlated with the relative abundance of Ilumatobacter. Carbohydrate transport and metabolism in the rhizosphere soil of pakchoi decreased, and lipid transport and metabolism increased after biochar application. Conclusion Overall, our results indicated that applying biochar improved soil physicochemical states and plant nutrient absorption, and affected the abundance of dominant bacterial groups (e.g., Gemmatimonadetes and Ilumatobacter), these were the main factors to increase pakchoi growth and promote quality of pakchoi. Therefore, considering the growth, quality of pakchoi, and soil environment, the effect of using 3% biochar is better.
Collapse
Affiliation(s)
- Xia Wu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- Heilongjiang Bayi Agricultural University, Ministry of Agriculture and Rural Aûairs, Key Laboratory of Low-carbon Green Agriculture Carbon in Northeastrn China, Daqing, Heilongjiang, China
| | - Fengjun Yang
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jili Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Feng Gao
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yi Chen Hu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Kejun Yang
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Peng Wang
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
4
|
Chen Z, Guo Z, Zhou L, Xu H, Liu C, Yan X. Advances in Identifying the Mechanisms by Which Microorganisms Improve Barley Salt Tolerance. Life (Basel) 2023; 14:6. [PMID: 38276255 PMCID: PMC10817418 DOI: 10.3390/life14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
As the global human population continues to increase, the use of saline-alkali land for food production is an important consideration for food security. In addition to breeding or cultivating salt-tolerant crop varieties, microorganisms are increasingly being evaluated for their ability to improve plant salt tolerance. Barley is one of the most important and salt-tolerant cereal crops and is a model system for investigating the roles of microorganisms in improving plant salt tolerance. However, a comprehensive review of the mechanisms by which microorganisms improve barley salt tolerance remains lacking. In this review, the mechanisms of barley salt tolerance improvement by microorganisms are summarized, along with a discussion of existing problems in current research and areas of future research directions. In particular, with the development of sequencing technology and the great reduction of prices, the use of omics can not only comprehensively evaluate the role of microorganisms but also evaluate the impact of the microbiome on plants, which will provide us with many opportunities and challenges in this research area.
Collapse
Affiliation(s)
- Zhiwei Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Zhenzhu Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Longhua Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Hongwei Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Z.G.); (L.Z.); (H.X.); (C.L.)
| | - Xin Yan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil. Comput Struct Biotechnol J 2022; 20:6543-6551. [DOI: 10.1016/j.csbj.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
|
6
|
Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops. Int J Mol Sci 2022; 23:ijms23137036. [PMID: 35806037 PMCID: PMC9266936 DOI: 10.3390/ijms23137036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Saline soils are a major challenge in agriculture, and salinization is increasing worldwide due to climate change and destructive agricultural practices. Excessive amounts of salt in soils cause imbalances in ion distribution, physiological dehydration, and oxidative stress in plants. Breeding and genetic engineering methods to improve plant salt tolerance and the better use of saline soils are being explored; however, these approaches can take decades to accomplish. A shorter-term approach to improve plant salt tolerance is to be inoculated with bacteria with high salt tolerance or adjusting the balance of bacteria in the rhizosphere, including endosymbiotic bacteria (living in roots or forming a symbiont) and exosymbiotic bacteria (living on roots). Rhizosphere bacteria promote plant growth and alleviate salt stress by providing minerals (such as nitrogen, phosphate, and potassium) and hormones (including auxin, cytokinin, and abscisic acid) or by reducing ethylene production. Plant growth-promoting rhizosphere bacteria are a promising tool to restore agricultural lands and improve plant growth in saline soils. In this review, we summarize the mechanisms of plant growth-promoting bacteria under salt stress and their applications for improving plant salt tolerance to provide a theoretical basis for further use in agricultural systems.
Collapse
|
7
|
Angulo V, Beriot N, Garcia-Hernandez E, Li E, Masteling R, Lau JA. Plant-microbe eco-evolutionary dynamics in a changing world. THE NEW PHYTOLOGIST 2022; 234:1919-1928. [PMID: 35114015 DOI: 10.1111/nph.18015] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Both plants and their associated microbiomes can respond strongly to anthropogenic environmental changes. These responses can be both ecological (e.g. a global change affecting plant demography or microbial community composition) and evolutionary (e.g. a global change altering natural selection on plant or microbial populations). As a result, global changes can catalyse eco-evolutionary feedbacks. Here, we take a plant-focused perspective to discuss how microbes mediate plant ecological responses to global change and how these ecological effects can influence plant evolutionary response to global change. We argue that the strong and functionally important relationships between plants and their associated microbes are particularly likely to result in eco-evolutionary feedbacks when perturbed by global changes and discuss how improved understanding of plant-microbe eco-evolutionary dynamics could inform conservation or even agriculture.
Collapse
Affiliation(s)
- Violeta Angulo
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Nicolas Beriot
- Soil Physics and Land Management Group, Wageningen University & Research, PO Box 47, Wageningen, 6700AA, the Netherlands
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, Cartagena, 30203, Spain
| | - Edisa Garcia-Hernandez
- Microbial Community Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9700 CC, the Netherlands
| | - Erqin Li
- Plant-Microbe Interactions Group, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Raul Masteling
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, Wageningen, 6708 PB, the Netherlands
- Institute of Biology, Leiden University, Leiden, 2333 BE, the Netherlands
| | - Jennifer A Lau
- Biology Department and the Environmental Resilience Institute, Indiana University, 1001 East 3rd St., Bloomington, IN, 47405, USA
| |
Collapse
|
8
|
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:373-389. [PMID: 34482588 DOI: 10.1111/tpj.15483] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 05/21/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.
Collapse
Affiliation(s)
- Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, Murcia, 30100, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| |
Collapse
|
9
|
Jiang H, Li S, Wang T, Chi X, Qi P, Chen G. Interaction Between Halotolerant Phosphate-Solubilizing Bacteria ( Providencia rettgeri Strain TPM23) and Rock Phosphate Improves Soil Biochemical Properties and Peanut Growth in Saline Soil. Front Microbiol 2021; 12:777351. [PMID: 35027913 PMCID: PMC8751486 DOI: 10.3389/fmicb.2021.777351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Soil salinity has adverse effects on soil microbial activity and nutrient cycles and therefore limits crop growth and yield. Amendments with halotolerant phosphate-solubilizing bacteria (PSB) and rock phosphate (RP) may improve properties of saline soil. In this study, we investigated the effects of RP either alone or in combination with PSB (Providencia rettgeri strain TPM23) on peanut growth and soil quality in a saline soil. With the combined application of RP and PSB, plant length and biomass (roots and shoots) and uptake of phosphorus (P), nitrogen (N), and potassium (K) increased significantly. Soil Na+ and Cl- contents decreased in the PR alone or PR combined with PSB treatment groups. There were strongly synergistic effects of RP and PSB on soil quality, including a decrease in pH. The soil available N, P, and K contents were significantly affected by the PSB treatments. In addition, the alkaline phosphomonoesterases, urease, and dehydrogenase activities increased significantly compared with the untreated group; highest alkaline phosphomonoesterases activity was observed in the RP and PSB treatment groups. The composition of rhizosphere soil bacterial communities was determined using 454-pyrosequencing of the 16S rRNA gene. In the PR alone or PR combined with PSB treatment groups, the structure of the soil bacterial community improved with increasing richness and diversity. With PSB inoculation, the relative abundance of Acidobacteria, Chloroflexi, and Planctomycetes increased. The three phyla were also positively correlated with soil available N and root dry weight. These results suggested microbiological mechanisms by which the combined use of RP and PSB improved saline soil and promoted plant growth. Overall, the study indicates the combined use of RP and PSB can be an economical and sustainable strategy to increase plant growth in P-deficient and salt-affected soils.
Collapse
Affiliation(s)
- Huanhuan Jiang
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- Shandong Peanut Research Institute, Qingdao, China
| | - Sainan Li
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Tong Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, China
| | - Peishi Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Gang Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| |
Collapse
|
10
|
Alzate Zuluaga MY, Martinez de Oliveira AL, Valentinuzzi F, Tiziani R, Pii Y, Mimmo T, Cesco S. Can Inoculation With the Bacterial Biostimulant Enterobacter sp. Strain 15S Be an Approach for the Smarter P Fertilization of Maize and Cucumber Plants? FRONTIERS IN PLANT SCIENCE 2021; 12:719873. [PMID: 34504509 PMCID: PMC8421861 DOI: 10.3389/fpls.2021.719873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) is an essential nutrient for plants. The use of plant growth-promoting bacteria (PGPB) may also improve plant development and enhance nutrient availability, thus providing a promising alternative or supplement to chemical fertilizers. This study aimed to evaluate the effectiveness of Enterobacter sp. strain 15S in improving the growth and P acquisition of maize (monocot) and cucumber (dicot) plants under P-deficient hydroponic conditions, either by itself or by solubilizing an external source of inorganic phosphate (Pi) [Ca3(PO4)2]. The inoculation with Enterobacter 15S elicited different effects on the root architecture and biomass of cucumber and maize depending on the P supply. Under sufficient P, the bacterium induced a positive effect on the whole root system architecture of both plants. However, under P deficiency, the bacterium in combination with Ca3(PO4)2 induced a more remarkable effect on cucumber, while the bacterium alone was better in improving the root system of maize compared to non-inoculated plants. In P-deficient plants, bacterial inoculation also led to a chlorophyll content [soil-plant analysis development (SPAD) index] like that in P-sufficient plants (p < 0.05). Regarding P nutrition, the ionomic analysis indicated that inoculation with Enterobacter 15S increased the allocation of P in roots (+31%) and shoots (+53%) of cucumber plants grown in a P-free nutrient solution (NS) supplemented with the external insoluble phosphate, whereas maize plants inoculated with the bacterium alone showed a higher content of P only in roots (36%) but not in shoots. Furthermore, in P-deficient cucumber plants, all Pi transporter genes (CsPT1.3, CsPT1.4, CsPT1.9, and Cucsa383630.1) were upregulated by the bacterium inoculation, whereas, in P-deficient maize plants, the expression of ZmPT1 and ZmPT5 was downregulated by the bacterial inoculation. Taken together, these results suggest that, in its interaction with P-deficient cucumber plants, Enterobacter strain 15S might have solubilized the Ca3(PO4)2 to help the plants overcome P deficiency, while the association of maize plants with the bacterium might have triggered a different mechanism affecting plant metabolism. Thus, the mechanisms by which Enterobacter 15S improves plant growth and P nutrition are dependent on crop and nutrient status.
Collapse
Affiliation(s)
- Mónica Yorlady Alzate Zuluaga
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
- Department of Biochemistry and Biotechnology, State University of Londrina, Londrina, Brazil
| | | | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Raphael Tiziani
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| |
Collapse
|
11
|
Zandalinas SI, Fritschi FB, Mittler R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. TRENDS IN PLANT SCIENCE 2021; 26:588-599. [PMID: 33745784 DOI: 10.1016/j.tplants.2021.02.011] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 05/19/2023]
Abstract
Global warming, climate change, and environmental pollution present plants with unique combinations of different abiotic and biotic stresses. Although much is known about how plants acclimate to each of these individual stresses, little is known about how they respond to a combination of many of these stress factors occurring together, namely a multifactorial stress combination. Recent studies revealed that increasing the number of different co-occurring multifactorial stress factors causes a severe decline in plant growth and survival, as well as in the microbiome biodiversity that plants depend upon. This effect should serve as a dire warning to our society and prompt us to decisively act to reduce pollutants, fight global warming, and augment the tolerance of crops to multifactorial stress combinations.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA.
| |
Collapse
|