1
|
Ma YN, Mongkolthanaruk W, Riddech N. Enhancing soil amendment for salt stress using pretreated rice straw and cellulolytic fungi. Sci Rep 2024; 14:13903. [PMID: 38886460 PMCID: PMC11183052 DOI: 10.1038/s41598-024-64705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Rice straw breakdown is sluggish, which makes agricultural waste management difficult, however pretreatment procedures and cellulolytic fungi can address this issue. Through ITS sequencing, Chaetomium globosum C1, Aspergillus sp. F2, and Ascomycota sp. SM2 were identified from diverse sources. Ascomycota sp. SM2 exhibited the highest carboxymethyl cellulase (CMCase) activity (0.86 IU/mL) and filter-paper cellulase (FPase) activity (1.054 FPU/mL), while Aspergillus sp. F2 showed the highest CMCase activity (0.185 IU/mL) after various pretreatments of rice straw. These fungi thrived across a wide pH range, with Ascomycota sp. SM2 from pH 4 to 9, Aspergillus sp. F2, and Chaetomium globosum C1 thriving in alkaline conditions (pH 9). FTIR spectroscopy revealed significant structural changes in rice straw after enzymatic hydrolysis and solid-state fermentation, indicating lignin, cellulose, and hemicellulose degradation. Soil amendments with pretreated rice straw, cow manure, biochar, and these fungi increased root growth and soil nutrient availability, even under severe salt stress (up to 9.3 dS/m). The study emphasizes the need for a better understanding of Ascomycota sp. degradation capabilities and proposes that using cellulolytic fungus and pretreatment rice straw into soil amendments could mitigate salt-related difficulties and improve nutrient availability in salty soils.
Collapse
Affiliation(s)
- Yen Nhi Ma
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wiyada Mongkolthanaruk
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuntavun Riddech
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Wang Y, Liao Y, Gou C, Zhang H, Chen L, Bao Y. Effect of Lentinus sajor-caju on the chemical composition and antioxidant activity of highland barley straw under solid-state fermentation. Front Microbiol 2024; 15:1365254. [PMID: 38841071 PMCID: PMC11150714 DOI: 10.3389/fmicb.2024.1365254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction The efficient utilization of straw resources as animal feed has gained considerable attention. The objective of this study was to evaluate whether Lentinus sajor-caju treatment alters the chemical composition and antioxidant activity of highland barley straw and enhances its functional value as a ruminant feed. Methods The chemical composition, antioxidant capacity, and metabolomic profile of highland barley straw were determined after 21 days of solid-state fermentation with L. sajor-caju at 25°C. The differential metabolites between fermented and unfermented highland barley straw were identified by LC-MS and the relationship between the identified metabolites and antioxidant capacity was elucidated. Results The results showed that, compared with untreated highland barley straw, the crude protein and ether extract contents were higher (51.55 and 76.43%, respectively) in highland barley straw after 21 days of incubation with L. sajor-caju, whereas the hemicellulose, cellulose, and acid detergent lignin contents were lower (2.48, 25.08, and 45%, respectively). The total antioxidant capacity was significantly higher in L. sajor-caju-treated than in untreated highland barley straw. In total, 600 differential metabolites (301 upregulated and 299 downregulated) were identified between L. sajor-caju-fermented and unfermented highland barley straw. Correlation analysis results showed that Fe2+ scavenging and total phenolic content were strongly correlated with total antioxidant capacity. Meanwhile, the differential flavonoid metabolites between fermented and unfermented highland barley straw were primarily associated with antioxidant activity, with kaempferol 3-xylosylglucoside, isoginkgetin, and rhoifolin being the most representative. Conclusion Thus, this study demonstrates that L. sajor-caju could enhance the functional value of highland barley straw, showing the potential of L. sajor-caju for improving the utilization of agricultural straws in ruminants.
Collapse
Affiliation(s)
- Yuqiong Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yangci Liao
- Institute of Pratacultural, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Hang Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Liming Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yuhong Bao
- Institute of Pratacultural, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| |
Collapse
|
3
|
Isola D, Lee HJ, Chung YJ, Zucconi L, Pelosi C. Once upon a Time, There Was a Piece of Wood: Present Knowledge and Future Perspectives in Fungal Deterioration of Wooden Cultural Heritage in Terrestrial Ecosystems and Diagnostic Tools. J Fungi (Basel) 2024; 10:366. [PMID: 38786721 PMCID: PMC11122135 DOI: 10.3390/jof10050366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Wooden Cultural Heritage (WCH) represents a significant portion of the world's historical and artistic heritage, consisting of immovable and movable artefacts. Despite the expertise developed since ancient times to enhance its durability, wooden artefacts are inevitably prone to degradation. Fungi play a pivotal role in the deterioration of WCH in terrestrial ecosystems, accelerating its decay and leading to alterations in color and strength. Reviewing the literature of the last 25 years, we aimed to provide a comprehensive overview of fungal diversity affecting WCH, the biochemical processes involved in wood decay, and the diagnostic tools available for fungal identification and damage evaluation. Climatic conditions influence the occurrence of fungal species in threatened WCH, characterized by a prevalence of wood-rot fungi (e.g., Serpula lacrymans, Coniophora puteana) in architectural heritage in temperate and continental climates and Ascomycota in indoor and harsh environments. More efforts are needed to address the knowledge fragmentation concerning biodiversity, the biology of the fungi involved, and succession in the degradative process, which is frequently centered solely on the main actors. Multidisciplinary collaboration among engineers, restorers, and life sciences scientists is vital for tackling the challenges posed by climate change with increased awareness. Traditional microbiology and culture collections are fundamental in laying solid foundations for a more comprehensive interpretation of big data.
Collapse
Affiliation(s)
- Daniela Isola
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Hyun-Ju Lee
- Institute of Preventive Conservation for Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Yong-Jae Chung
- Department of Heritage Conservation and Restoration, Graduate School of Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Claudia Pelosi
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| |
Collapse
|
4
|
Bari E, Far MG, Daniel G, Bozorgzadeh Y, Ribera J, Aghajani H, Hosseinpourpia R. Fungal behavior and recent developments in biopulping technology. World J Microbiol Biotechnol 2024; 40:207. [PMID: 38767733 DOI: 10.1007/s11274-024-03992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Biological pretreatment of wood chips by fungi is a well-known approach prior to mechanical- or chemical pulp production. For this biological approach, a limited number of white-rot fungi with an ability to colonize and selectively degrade lignin are used to pretreat wood chips allowing the remaining cellulose to be processed for further applications. Biopulping is an environmentally friendly technology that can reduce the energy consumption of traditional pulping processes. Fungal pretreatment also reduces the pitch content in the wood chips and improves the pulp quality in terms of brightness, strength, and bleachability. The bleached biopulps are easier to refine compared to pulps produced by conventional methodology. In the last decades, biopulping has been scaled up with pilot trials towards industrial level, with optimization of several intermediate steps and improvement of economic feasibility. Nevertheless, fundamental knowledge on the biochemical mechanisms involved in biopulping is still lacking. Overall, biopulping technology has advanced rapidly during recent decades and pilot mill trials have been implemented. The use of fungi as pretreatment for pulp production is in line with modern circular economy strategies and can be implemented in existing production plants. In this review, we discuss some recent advances in biopulping technology, which can improve mechanical-, chemical-, and organosolv pulping processes along with their mechanisms.
Collapse
Affiliation(s)
- Ehsan Bari
- Department of Wood Sciences and Engineering, Technical and Vocational University (TVU), Tehran, Iran.
| | - Mohammad Ghorbanian Far
- Department of Wood Sciences and Engineering, Technical and Vocational University (TVU), Tehran, Iran
| | - Geoffrey Daniel
- Department of Forest Biomaterial and Technology/Wood Science, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Younes Bozorgzadeh
- Department of Wood Engineering and Technology, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, 4913815739, Iran
| | - Javier Ribera
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Hamed Aghajani
- Department of Forest Science and Engineering, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Reza Hosseinpourpia
- Department of Forestry and Wood Technology, Linnaeus University, Georg Lückligs Plats 1, 35195, Växjö, Sweden.
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| |
Collapse
|
5
|
Wang Y, Gou C, Chen L, Liao Y, Zhang H, Luo L, Ji J, Qi Y. Solid-State Fermentation with White Rot Fungi ( Pleurotus Species) Improves the Chemical Composition of Highland Barley Straw as a Ruminant Feed and Enhances In Vitro Rumen Digestibility. J Fungi (Basel) 2023; 9:1156. [PMID: 38132757 PMCID: PMC10744516 DOI: 10.3390/jof9121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin degradation is important for enhancing the digestibility and improving the nutritive quality of ruminant feeds. White rot fungi are well known for their bioconversion of lignocellulosic biomass. The objective of this paper was to evaluate whether Lentinus sajor-caju, Pleurotus ostreatus, Phyllotopsis rhodophylla, Pleurotus djamor, Pleurotus eryngii, and Pleurotus citrinopileatus treatments altered the chemical compositions of highland barley straw constituents and enhanced their nutritional value as a ruminant feed. All white rot fungi significantly increased the relative crude protein (CP), ethyl ether extract (EE), starch, soluble protein (SP), and non-protein nitrogen (NPN) contents but decreased the ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and acid detergent insoluble protein (ADFIP) contents. In addition, L. sajor-caju treatment increased (p < 0.001) the levels of PA, PB2, PB3, CA, CB1, CB2, and CNSC, but reduced (p < 0.001) the PC and CC in the solid-state fermentation of highland barley straw. Maximum ligninlysis (50.19%) was optimally produced in the presence of 1.53% glucose and 2.29% urea at 22.72 ℃. The in vitro dry matter digestibility and total volatile fatty acid concentrations of fermented highland barley straw, as well as the fermentability, were optimized and improved with L. sajor-caju, which degraded the lignocellulose and improved the nutritional value of highland barley straw as a ruminant feed.
Collapse
Affiliation(s)
- Yuqiong Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Liming Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Yangci Liao
- Institute of Pratacultural, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
| | - Hang Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Lilong Luo
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Jiahang Ji
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Yu Qi
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| |
Collapse
|
6
|
Chen J, Hao X, Chi Y, Ma L. Metabolic regulation mechanism of Trametes gibbosa CB_1 on lignin. Int J Biol Macromol 2023; 240:124189. [PMID: 36990410 DOI: 10.1016/j.ijbiomac.2023.124189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
White rot fungi can degrade lignin and play a significant role in the recycling of carbon resources for environmental protection. Trametes gibbosa is the main white rot fungus in Northeast China. The main acids produced by T. gibbosa degradation, include long-chain fatty acids, lactic acid, succinic acid, and some small molecular compounds for example benzaldehyde. A variety of proteins respond to lignin stress and play an important role in xenobiotics metabolism, metal ion transport, and redox. Coordinated regulation and detoxification activation of H2O2 produced in oxidative stress by peroxidase coenzyme system and Fenton reaction. The Dioxygenase cleavage pathway and β-ketoadipic acid pathway are the main oxidation pathways of lignin degradation, which mediate the entry of "COA" into the TCA cycle. In the joint action of hydrolase and coenzyme, cellulose, hemicellulose, and other polysaccharides are degraded and finally converted to glucose to participate in energy metabolism. The expression of the laccase (Lcc_1) protein was verified by E. coli. Also, the Lcc_1 overexpression mutant was established. The morphology of mycelium was dense and the lignin degradation rate was improved. We completed the first non-directional mutation of in T. gibbosa. It also improved the mechanism of T. gibbosa in response to lignin stress.
Collapse
|
7
|
Study of Interactions between Titanium Dioxide Coating and Wood Cell Wall Ultrastructure. NANOMATERIALS 2022; 12:nano12152678. [PMID: 35957110 PMCID: PMC9370405 DOI: 10.3390/nano12152678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023]
Abstract
Titanium dioxide (TiO2) is used as a UV light absorber to protect wood matter from photodegradation. In this paper, interactions between wood and TiO2 coating are studied, and the efficiency of the coating is evaluated. For the experiments, two wood species were chosen: beech (Fagus sylvatica) and pine (Pinus sylvestris). Molecular and physical modifications in coated and uncoated wood exposed to UV radiation were investigated with Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and transmission electron microscopy (TEM). UV-VIS spectroscopy was used to describe the absorption of UV light by the TiO2 planar particles chosen for the experiment. It was demonstrated that TiO2 coating protects wood against photodegradation to a limited extent. TEM micrographs showed fissures in the wood matter around clusters of TiO2 particles in beech wood.
Collapse
|
8
|
Qin Y, Wang N, Ma Z, Li J, Wang Y, Zang L. A mechanistic study on electro-Fenton system cooperating with phangerochate chrysosporium to degrade lignin. RSC Adv 2022; 12:17285-17293. [PMID: 35765444 PMCID: PMC9186436 DOI: 10.1039/d2ra01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
The combined catalytic system of Electro-Fenton (E-Fenton) and Phanerochaete chrysosporium (P. chrysosporium) was constructed in liquid medium with additional potential to overcome the limitations of lignin degradation by white rot fungi alone. To further understand the mechanism of synergistic catalysis, we optimized the optimum potential for lignin catalysis by P. chrysosporium and built synergistic versus separate catalyses. After 48 h of incubation, the optimum growth environment and the highest lignin degradation rate (43.8%) of P. chrysosporium were achieved when 4 V was applied. After 96 h, the lignin degradation rate of the cocatalytic system was 62% (E-Fenton catalysis alone 22% and P. chrysosporium catalysis alone 19%), the pH of the growth maintenance system of P. chrysosporium was approximately 3.5, and the lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) enzyme activities, were significantly better than those of the control. The qPCR results indicated that the expression of both MnP and LiP genes was higher in the cocatalytic system. Meanwhile, FTIR and 2D-HSQC NMR confirmed that the synergistic catalysis was effective in breaking the aromatic functional groups and the side chains of the aliphatic region of lignin. This study showed that the synergistic catalytic process of electro-Fenton and P. chrysosporium was highly efficient in the degradation of lignin. In addition, the synergetic system is simple to operate, economical and green, and has good prospects for industrial application.
Collapse
Affiliation(s)
- Yingjian Qin
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353 Shandong P.R. China +86 13325127799
| | - Na Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353 Shandong P.R. China +86 13325127799
| | - Zhongmin Ma
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353 Shandong P.R. China +86 13325127799
| | - Jinsheng Li
- Weifang Ensign Industry Co., Ltd Changle 262499 Shandong P.R. China
| | - Yaozong Wang
- Weifang Ensign Industry Co., Ltd Changle 262499 Shandong P.R. China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353 Shandong P.R. China +86 13325127799
| |
Collapse
|
9
|
Li P, Ren J, Jiang Z, Huang L, Wu C, Wu W. Review on the preparation of fuels and chemicals based on lignin. RSC Adv 2022; 12:10289-10305. [PMID: 35424980 PMCID: PMC8972114 DOI: 10.1039/d2ra01341j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Lignin is by far the most abundant natural renewable aromatic polymer in nature, and its reserves are second only to cellulose. In addition to the rich carbon content, the structure of lignin contains functional groups such as benzene rings, methoxyl groups, and phenolic hydroxyl groups. Lignin degradation has become one of the high value, high quality and high efficiency methods to convert lignin, which is of great significance to alleviating the current energy shortage and environmental crisis. This article introduces the hydrolysis methods of lignin in acidic, alkaline, ionic liquids and supercritical fluids, reviews the heating rate, the source of lignin species and the effects of heating rate on the pyrolysis of lignin, and briefly describes the metal catalysis, oxidation methods such as electrochemical degradation and photocatalytic oxidation, and degradation reduction methods using hydrogen and hydrogen supply reagents. The lignin degradation methods for the preparation of fuels and chemicals are systematically summarized. The advantages and disadvantages of different methods, the selectivity under different conditions and the degradation efficiency of different catalytic combination systems are compared. In this paper, a new approach to improve the degradation efficiency is envisioned in order to contribute to the efficient utilization and high value conversion of lignin.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Zhengwei Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Lijing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
10
|
Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics. Sci Rep 2022; 12:1129. [PMID: 35064211 PMCID: PMC8782829 DOI: 10.1038/s41598-022-05107-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 01/19/2023] Open
Abstract
The study sought to investigate the potentials of axenic cultures of Pleurotus ostreatus, Phanerochaete chrysosporium and their coculture (P. chrysosporium and P. ostreatus) to break down lignin and to enhance the rumen fermentability of rice straw. Rice straw was fermented by two lignin-degrading fungi, namely, P. ostreatus, P. chrysosporium and its coculture (P. ostreatus and P. chrysosporium) with uninoculated straw as control under solid-state fermentation employing a completely randomized research design. The coculture exhibited a mutual intermingling plus inhibition interaction. The fungi treatment increased the crude protein from (5.1%) in the control to (6.5%, 6.6%, and 6.7%) in the P. ostreatus, P. chrysosporium and coculture respectively. The coculture treated straw had a lower lignin content (5.3%) compared to the P. chrysosporium (6.2%) with the P. ostreatus recording the least (3.3%) lignin fraction. Treatment of rice straw with coculture improved the in vitro dry matter digestibility (68.1%), total volatile fatty acids (35.3 mM), and total gas (57.4 ml/200 mg) compared to P. chrysosporium (45.1%, 32.2 mM, 44.4 ml/200 mg) but was second to P. ostreatus (75.3%, 38.3 mM, 65.6 ml/200 mg). Instead of an anticipated synergistic effect from the coculture, a competitive antagonistic effect was rather observed at the end of the study, a condition that can be attributed to the coculture behavior.
Collapse
|
11
|
Comparison of Physical and Mechanical Properties of Beech and Walnut Wood from Iran and Georgian Beech. FORESTS 2021. [DOI: 10.3390/f12060801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beech (Fagus orientalis Lipsky) forests in Iran are one of the most important sources of the hardwood species used for lumber, furniture, and interior object design due to its hardness, wear resistance, strength, and excellent bending capabilities. Furthermore, Iran is third most important country for walnut wood production after China and United States. Therefore, in this study, we compared specific mechanical properties between beech wood obtained from Sangdeh (Iran) and Georgia and four different kinds of walnut woods in Iran. Physical and mechanical tests were performed according to ISO 3129 (2012) and ASTM (D143-14) standards. The moisture content of all samples was 12% during mechanical tests. The mean dry density of Sangdeh and Georgian beech obtained was 0.61 and 0.65 g/cm3, respectively, while the mean dry density of Noor, Shahrekord, Mashhad, and Mako walnut woods measured 0.62, 0.59, 0.62, and 0.57 g/cm3, respectively. The results showed significant differences among the properties of the Sangdeh and Georgian species and the four different walnut tree woods. Overall, the obtained strengths of Georgian timber were higher than that of the Iranian beech, which was attributed to the higher density of Georgian timber. Furthermore, due to the higher density of the walnut species in the Noor and Mashhad regions, the measured mechanical strengths of these trees were higher than those of other walnut species. The obtained results provide relevant information to determinate the future applications of each wood source.
Collapse
|
12
|
Machová D, Oberle A, Zárybnická L, Dohnal J, Šeda V, Dömény J, Vacenovská V, Kloiber M, Pěnčík J, Tippner J, Čermák P. Surface Characteristics of One-Sided Charred Beech Wood. Polymers (Basel) 2021; 13:polym13101551. [PMID: 34066234 PMCID: PMC8151175 DOI: 10.3390/polym13101551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
The aim of this paper was to analyze selected properties of beech wood (Fagus sylvatica L.) treated by one-sided surface charring. Specimens were one-side charred with a hot plate using several time-temperature combinations (from 200 to 400 °C). Characteristics such as colour, discoloration, surface roughness, fire resistance, total carbohydrate content at several wood layers and decay resistance were evaluated. Surface charring was applied to the radial and tangential surfaces. Colour measurements showed that the surface of the wood turned grey due to charring. In addition to colour measurements, other experiments showed significant differences between radial and tangential specimens due to their different structures. The higher the temperature used in treating them, the lower the roughness values for radial specimens, while the trend for tangential specimens was the opposite. A smoother surface is more fire resistant, so radial specimens are generally better in this regard. Tangential specimens are more susceptible during preparation to forming cracks that impair flame resistance because a continuous protective densified layer is not formed. The determination of total carbohydrates revealed significant changes at various wood depths after surface charring. These changes were more predictable in radial specimens due to the annual ring orientation, because each layer consisted of a similar earlywood/latewood ratio. Finally, when decay resistance was assessed, weight loss was found to be lower in all specimens than in the references. The results suggest that charring at a particular combination of temperature and time improved the investigated properties of the surface-modified beech.
Collapse
Affiliation(s)
- Dita Machová
- Department of Materials and Research, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Prague, Czech Republic; (L.Z.); (M.K.)
- Correspondence: ; Tel.: +420-567-225-333
| | - Anna Oberle
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic; (A.O.); (V.Š.); (J.D.); (J.T.); (P.Č.)
| | - Lucie Zárybnická
- Department of Materials and Research, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Prague, Czech Republic; (L.Z.); (M.K.)
| | - Jakub Dohnal
- Faculty of Civil Engineering, Institute of Building Structures, Brno University of Technology, Veveří 331/95, 602 00 Brno, Czech Republic; (J.D.); (V.V.); (J.P.)
| | - Vít Šeda
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic; (A.O.); (V.Š.); (J.D.); (J.T.); (P.Č.)
| | - Jakub Dömény
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic; (A.O.); (V.Š.); (J.D.); (J.T.); (P.Č.)
| | - Veronika Vacenovská
- Faculty of Civil Engineering, Institute of Building Structures, Brno University of Technology, Veveří 331/95, 602 00 Brno, Czech Republic; (J.D.); (V.V.); (J.P.)
| | - Michal Kloiber
- Department of Materials and Research, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Prague, Czech Republic; (L.Z.); (M.K.)
| | - Jan Pěnčík
- Faculty of Civil Engineering, Institute of Building Structures, Brno University of Technology, Veveří 331/95, 602 00 Brno, Czech Republic; (J.D.); (V.V.); (J.P.)
| | - Jan Tippner
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic; (A.O.); (V.Š.); (J.D.); (J.T.); (P.Č.)
| | - Petr Čermák
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic; (A.O.); (V.Š.); (J.D.); (J.T.); (P.Č.)
| |
Collapse
|