1
|
Zirou C, Gumeni S, Bellos I, Ntanasis-Stathopoulos I, Sklirou AD, Bagratuni T, Korompoki E, Apostolakou F, Papassotiriou I, Trougakos IP, Terpos E. Longitudinal Analysis of Antibody Response Following SARS-CoV-2 Infection Depending on Disease Severity: A Prospective Cohort Study. Viruses 2023; 15:2250. [PMID: 38005927 PMCID: PMC10674840 DOI: 10.3390/v15112250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Severe coronavirus disease 19 (COVID-19) is characterized by a dysregulated inflammatory response, with humoral immunity playing a central role in the disease course. The objective of this study was to assess the immune response and the effects of vaccination in recovered individuals with variable disease severity up to one year following natural infection. METHODS A prospective cohort study was conducted including patients with laboratory-confirmed COVID-19. Disease severity was classified as mild, moderate, and severe based on clinical presentation and outcomes. Anti-RBD (receptor binding domain) and neutralizing antibodies were evaluated at multiple timepoints during the first year after COVID-19 diagnosis. RESULTS A total of 106 patients were included; of them, 28 were diagnosed with mild, 38 with moderate, and 40 with severe disease. At least one vaccine dose was administered in 58 individuals during the follow-up. Participants with mild disease presented significantly lower anti-RBD and neutralizing antibodies compared to those with moderate and severe disease up to the 3rd and 6th months after the infection, respectively. After adjusting for covariates, in the third month, severe COVID-19 was associated with significantly higher anti-RBD (β: 563.09; 95% confidence intervals (CI): 257.02 to 869.17) and neutralizing (β: 21.47; 95% CI: 12.04 to 30.90) antibodies. Among vaccinated individuals, at the 12th month, a history of moderate disease was associated with significantly higher anti-RBD levels (β: 5615.19; 95% CI: 657.92 to 10,572.46). CONCLUSIONS Severe COVID-19 is associated with higher anti-RBD and neutralizing antibodies up to 6 months after the infection. Vaccination of recovered patients is associated with a remarkable augmentation of antibody titers up to one year after COVID-19 diagnosis, regardless of disease severity.
Collapse
Affiliation(s)
- Christina Zirou
- Department of Internal Medicine, Sotiria General and Chest Diseases Hospital of Athens, 11527 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioannis Bellos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Eleni Korompoki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Filia Apostolakou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
2
|
Senefeld JW, Gorman EK, Johnson PW, Moir ME, Klassen SA, Carter RE, Paneth NS, Sullivan DJ, Morkeberg OH, Wright RS, Fairweather D, Bruno KA, Shoham S, Bloch EM, Focosi D, Henderson JP, Juskewitch JE, Pirofski LA, Grossman BJ, Tobian AA, Franchini M, Ganesh R, Hurt RT, Kay NE, Parikh SA, Baker SE, Buchholtz ZA, Buras MR, Clayburn AJ, Dennis JJ, Diaz Soto JC, Herasevich V, Klompas AM, Kunze KL, Larson KF, Mills JR, Regimbal RJ, Ripoll JG, Sexton MA, Shepherd JR, Stubbs JR, Theel ES, van Buskirk CM, van Helmond N, Vogt MN, Whelan ER, Wiggins CC, Winters JL, Casadevall A, Joyner MJ. Rates Among Hospitalized Patients With COVID-19 Treated With Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clin Proc Innov Qual Outcomes 2023; 7:499-513. [PMID: 37859995 PMCID: PMC10582279 DOI: 10.1016/j.mayocpiqo.2023.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Objective To examine the association of COVID-19 convalescent plasma transfusion with mortality and the differences between subgroups in hospitalized patients with COVID-19. Patients and Methods On October 26, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma in the literature from January 1, 2020, to October 26, 2022. Randomized clinical trials and matched cohort studies investigating COVID-19 convalescent plasma transfusion compared with standard of care treatment or placebo among hospitalized patients with confirmed COVID-19 were included. The electronic search yielded 3841 unique records, of which 744 were considered for full-text screening. The selection process was performed independently by a panel of 5 reviewers. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 5 independent reviewers in duplicate and pooled using an inverse-variance random effects model. The prespecified end point was all-cause mortality during hospitalization. Results Thirty-nine randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants were included in the systematic review. Separate meta-analyses reported that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for both randomized clinical trials (odds ratio [OR], 0.87; 95% CI, 0.76-1.00) and matched cohort studies (OR, 0.76; 95% CI, 0.66-0.88). The meta-analysis of subgroups revealed 2 important findings. First, treatment with convalescent plasma containing high antibody levels was associated with a decrease in mortality compared with convalescent plasma containing low antibody levels (OR, 0.85; 95% CI, 0.73 to 0.99). Second, earlier treatment with COVID-19 convalescent plasma was associated with a decrease in mortality compared with the later treatment cohort (OR, 0.63; 95% CI, 0.48 to 0.82). Conclusion During COVID-19 convalescent plasma use was associated with a 13% reduced risk of mortality, implying a mortality benefit for hospitalized patients with COVID-19, particularly those treated with convalescent plasma containing high antibody levels treated earlier in the disease course.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Patrick W. Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - M. Erin Moir
- Department of Kinesiology, University of Wisconsin-Madison, Madison
| | - Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Nigel S. Paneth
- Department of Epidemiology and Biostatistics and Department of Pediatrics and Human Development, Michigan State University, East Lansing
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Olaf H. Morkeberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - R. Scott Wright
- Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
- Division of Cardiovascular Medicine, University of Florida, Gainesville
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Evan M. Bloch
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Italy
| | - Jeffrey P. Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO
| | | | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Brenda J. Grossman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO
| | - Aaron A.R. Tobian
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ravindra Ganesh
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ryan T. Hurt
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Zachary A. Buchholtz
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew R. Buras
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | - Andrew J. Clayburn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Joshua J. Dennis
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan C. Diaz Soto
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Allan M. Klompas
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Katie L. Kunze
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | | | - John R. Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Riley J. Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan G. Ripoll
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew A. Sexton
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - John R.A. Shepherd
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - James R. Stubbs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Noud van Helmond
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew N.P. Vogt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jeffrey L. Winters
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
3
|
Convalescent Plasma Therapy for COVID-19: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Viruses 2023; 15:v15030765. [PMID: 36992474 PMCID: PMC10054551 DOI: 10.3390/v15030765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Background: While passive immunotherapy has been considered beneficial for patients with severe respiratory viral infections, the treatment of COVID-19 cases with convalescent plasma produced mixed results. Thus, there is a lack of certainty and consensus regarding its effectiveness. This meta-analysis aims to assess the role of convalescent plasma treatment on the clinical outcomes of COVID-19 patients enrolled in randomized controlled trials (RCTs). Methods: A systematic search was conducted in the PubMed database (end-of-search: 29 December 2022) for RCTs on convalescent plasma therapy compared to supportive care\standard of care. Pooled relative risk (RR) and 95% confidence intervals were calculated with random-effects models. Subgroup and meta-regression analyses were also performed, in order to address heterogeneity and examine any potential association between the factors that varied, and the outcomes reported. The present meta-analysis was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A total of 34 studies were included in the meta-analysis. Per overall analysis, convalescent plasma treatment was not associated with lower 28-day mortality [RR = 0.98, 95% CI (0.91, 1.06)] or improved 28-day secondary outcomes, such as hospital discharge [RR = 1.00, 95% CI (0.97, 1.03)], ICU-related or score-related outcomes, with effect estimates of RR = 1.00, 95% CI (0.98, 1.05) and RR = 1.06, 95% CI (0.95, 1.17), respectively. However, COVID-19 outpatients treated with convalescent plasma had a 26% less risk of requiring hospital care, when compared to those treated with the standard of care [RR = 0.74, 95% CI (0.56, 0.99)]. Regarding subgroup analyses, COVID-19 patients treated with convalescent plasma had an 8% lower risk of ICU-related disease progression when compared to those treated with the standard of care (with or without placebo or standard plasma infusions) [RR = 0.92, 95% CI (0.85, 0.99)] based on reported outcomes from RCTs carried out in Europe. Finally, convalescent plasma treatment was not associated with improved survival or clinical outcomes in the 14-day subgroup analyses. Conclusions: Outpatients with COVID-19 treated with convalescent plasma had a statistically significantly lower risk of requiring hospital care when compared to those treated with placebo or the standard of care. However, convalescent plasma treatment was not statistically associated with prolonged survival or improved clinical outcomes when compared to placebo or the standard of care, per overall analysis in hospitalized populations. This hints at potential benefits, when used early, to prevent progression to severe disease. Finally, convalescent plasma was significantly associated with better ICU-related outcomes in trials carried out in Europe. Well-designed prospective studies could clarify its potential benefit for specific subpopulations in the post-pandemic era.
Collapse
|
4
|
Focosi D, Franchini M, Pirofski LA, Burnouf T, Paneth N, Joyner MJ, Casadevall A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin Microbiol Rev 2022; 35:e0020021. [PMID: 35262370 PMCID: PMC9491201 DOI: 10.1128/cmr.00200-21] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convalescent plasma (CP) recurs as a frontline treatment in epidemics because it is available as soon as there are survivors. The COVID-19 pandemic represented the first large-scale opportunity to shed light on the mechanisms of action, safety, and efficacy of CP using modern evidence-based medicine approaches. Studies ranging from observational case series to randomized controlled trials (RCTs) have reported highly variable efficacy results for COVID-19 CP (CCP), resulting in uncertainty. We analyzed variables associated with efficacy, such as clinical settings, disease severity, CCP SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antibody levels and function, dose, timing of administration (variously defined as time from onset of symptoms, molecular diagnosis, diagnosis of pneumonia, or hospitalization, or by serostatus), outcomes (defined as hospitalization, requirement for ventilation, clinical improvement, or mortality), CCP provenance and time for collection, and criteria for efficacy. The conflicting trial results, along with both recent WHO guidelines discouraging CCP usage and the recent expansion of the FDA emergency use authorization (EUA) to include outpatient use of CCP, create confusion for both clinicians and patients about the appropriate use of CCP. A review of 30 available RCTs demonstrated that signals of efficacy (including reductions in mortality) were more likely if the CCP neutralizing titer was >160 and the time to randomization was less than 9 days. The emergence of the Omicron variant also reminds us of the benefits of polyclonal antibody therapies, especially as a bridge to the development and availability of more specific therapies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Fodor E, Müller V, Iványi Z, Berki T, Kuten Pella O, Hornyák I, Ambrus M, Sárkány Á, Skázel Á, Madár Á, Kardos D, Kemenesi G, Földes F, Nagy S, Matusovits A, János N, Tordai A, Jakab F, Lacza Z. Early Transfusion of Convalescent Plasma Improves the Clinical Outcome in Severe SARS-CoV2 Infection. Infect Dis Ther 2022; 11:293-304. [PMID: 34817840 PMCID: PMC8611245 DOI: 10.1007/s40121-021-00514-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Plasma harvested from convalescent COVID-19 patients (CCP) has been applied as first-line therapy in the early phase of the SARS-CoV2 pandemic through clinical studies using various protocols. METHODS We present data from a cohort of 267 hospitalized severe COVID-19 patients who received CCP. No transfusion-related complications were reported, indicating the overall safety of CCP therapy. RESULTS Patients who eventually died from COVID-19 received CCP significantly later (3.95 versus 5.22 days after hospital admission) and had higher interleukin 6 (IL-6) levels (28.9 pg/ml versus 102.5 pg/ml) than those who survived. In addition, CCP transfusion caused a significant reduction in the overall inflammatory status of the patients regardless of the severity of disease or outcome, as evidenced by decreasing C-reactive protein, IL6 and ferritin levels. CONCLUSION We conclude that CCP transfusion is a safe and effective supplementary treatment modality for hospitalized COVID-19 patients characterized by better expected outcome if applied as early as possible. We also observed that IL-6 may be a suitable laboratory parameter for patient selection and monitoring of CCP therapy effectiveness.
Collapse
Affiliation(s)
- Eszter Fodor
- Orthosera Kft, Budapest, 1149 Hungary
- Univesity of Physical Education, Budapest, 1223 Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, 1083 Hungary
| | - Zsolt Iványi
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, 1082 Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, University of Pécs, Budapest, 7643 Hungary
| | | | - István Hornyák
- Instute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Mira Ambrus
- Univesity of Physical Education, Budapest, 1223 Hungary
| | - Ágnes Sárkány
- Szent György University Teaching Hospital, Székesfehérvár, 8000 Hungary
| | - Árpád Skázel
- Szent György University Teaching Hospital, Székesfehérvár, 8000 Hungary
| | - Ágnes Madár
- Univesity of Physical Education, Budapest, 1223 Hungary
| | | | - Gábor Kemenesi
- Szentágothai Research Center, National Laboratory of Virology, Univesity of Pécs, Pécs, 7622 Hungary
| | - Fanni Földes
- Szentágothai Research Center, National Laboratory of Virology, Univesity of Pécs, Pécs, 7622 Hungary
| | - Sándor Nagy
- Hungarian National Blood Transfusion Service, Budapest, 1113 Hungary
| | - Andrea Matusovits
- Hungarian National Blood Transfusion Service, Budapest, 1113 Hungary
| | - Nacsa János
- Hungarian National Blood Transfusion Service, Budapest, 1113 Hungary
| | - Attila Tordai
- Department of Transfusiology, Semmelweis University, Budapest, 1089 Hungary
| | - Ferenc Jakab
- Szentágothai Research Center, National Laboratory of Virology, Univesity of Pécs, Pécs, 7622 Hungary
| | - Zsombor Lacza
- Orthosera Kft, Budapest, 1149 Hungary
- Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Univesity of Physical Education, Budapest, 1223 Hungary
| |
Collapse
|
6
|
Rosati M, Terpos E, Ntanasis-Stathopoulos I, Agarwal M, Bear J, Burns R, Hu X, Korompoki E, Donohue D, Venzon DJ, Dimopoulos MA, Pavlakis GN, Felber BK. Sequential Analysis of Binding and Neutralizing Antibody in COVID-19 Convalescent Patients at 14 Months After SARS-CoV-2 Infection. Front Immunol 2021; 12:793953. [PMID: 34899762 PMCID: PMC8660679 DOI: 10.3389/fimmu.2021.793953] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023] Open
Abstract
Durability of SARS-CoV-2 Spike antibody responses after infection provides information relevant to understanding protection against COVID-19 in humans. We report the results of a sequential evaluation of anti-SARS-CoV-2 antibodies in convalescent patients with a median follow-up of 14 months (range 12.4-15.4) post first symptom onset. We report persistence of antibodies for all four specificities tested [Spike, Spike Receptor Binding Domain (Spike-RBD), Nucleocapsid, Nucleocapsid RNA Binding Domain (N-RBD)]. Anti-Spike antibodies persist better than anti-Nucleocapsid antibodies. The durability analysis supports a bi-phasic antibody decay with longer half-lives of antibodies after 6 months and antibody persistence for up to 14 months. Patients infected with the Wuhan (WA1) strain maintained strong cross-reactive recognition of Alpha and Delta Spike-RBD but significantly reduced binding to Beta and Mu Spike-RBD. Sixty percent of convalescent patients with detectable WA1-specific NAb also showed strong neutralization of the Delta variant, the prevalent strain of the present pandemic. These data show that convalescent patients maintain functional antibody responses for more than one year after infection, suggesting a strong long-lasting response after symptomatic disease that may offer a prolonged protection against re-infection. One patient from this cohort showed strong increase of both Spike and Nucleocapsid antibodies at 14 months post-infection indicating SARS-CoV-2 re-exposure. These antibodies showed stronger cross-reactivity to a panel of Spike-RBD including Beta, Delta and Mu and neutralization of a panel of Spike variants including Beta and Gamma. This patient provides an example of strong anti-Spike recall immunity able to control infection at an asymptomatic level. Together, the antibodies from SARS-CoV-2 convalescent patients persist over 14 months and continue to maintain cross-reactivity to the current variants of concern and show strong functional properties.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Mahesh Agarwal
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Eleni Korompoki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Duncan Donohue
- MS Applied Information and Management Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
7
|
Focosi D, Franchini M, Pirofski LA, Maggi F, Casadevall A. Is SARS-CoV-2 viral clearance in nasopharyngeal swabs an appropriate surrogate marker for clinical efficacy of neutralising antibody-based therapeutics? Rev Med Virol 2021; 32:e2314. [PMID: 34861088 DOI: 10.1002/rmv.2314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Viral clearance is likely the best way to assess the efficacy of antibody-based therapies. Although antibodies can mediate a variety of effects that include modulation of inflammation, the demonstration of viral clearance provides an accessible and measurable parameter that can be used to evaluate efficacy and determine dosing. Therefore, it is important to ascertain the ability of monoclonal antibodies and convalescent plasma to effect viral clearance. For COVID-19, which is caused by the respiratory virus SARS-CoV-2, the most common assay to assess viral clearance is via a nasopharyngeal swab (NPS). However, assessment of antibody efficacy by sampling this site may be misleading because it may not be as accessible to serum antibodies as respiratory secretions or circulating blood. Adding to the complexity of assessing the efficacy of administered antibody, particularly in randomised controlled trials (RCTs) that enroled patients at different times after the onset of COVID-19 symptoms, viral clearance may also be mediated by endogenous antibody. In this article we critically review available data on viral clearance in RCTs, matched control studies, case series and case reports of antibody therapies in an attempt to identify variables that contribute to antibody efficacy and suggest optimal strategies for future studies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Departments of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, New York City, New York, USA
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.,Laboratory of Microbiology, ASST Sette Laghi, Varese, Italy
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Cao H, Ming L, Chen L, Zhu X, Shi Y. The Effectiveness of Convalescent Plasma for the Treatment of Novel Corona Virus Disease 2019: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:641429. [PMID: 34646833 PMCID: PMC8502818 DOI: 10.3389/fmed.2021.641429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19), sweeping across the world, has created a worldwide pandemic. Effective treatments of COVID-19 are extremely urgent. Objective: To analyze the efficacy and safety of convalescent plasma (CCP) on patients with COVID-19. Methods: All the relevant studies were searched from PubMed, EMBASE,Cochrane library, Scopus, Web of Science, CBM, CNKI, Wan fang, VIP, Medrxiv, Biorxiv, and SSRN on July 19, 2021. PICOS criteria were as follows: (P) the study interests were human subjects with the infection of COVID-19; (I) the intervention of interest was CCP; (C) comparator treatments contained placebo, sham therapy, and standard treatment; (O) the primary outcome was mortality rates by the novel coronavirus. The secondary outcomes included the incidence of serious adverse events, the rate of ICU admission and mechanical ventilation (MV); the length of hospital stay; the duration of MV and ICU stay; the antibody levels, inflammatory factor levels, and viral loads. (S) Only randomized controlled trials (RCTs) of CCP were included. Subanalysis, quality assessment, sensitive analysis, and publication bias were conducted by two reviewers independently. Results: Sixteen RCTs were included and enrolled a total of 16,296 participants in this meta-analysis. The pooled data showed that no significant difference was observed in reducing the rate of overall mortality between CCP treatment group and placebo group (OR 0.96; 95% CI 0.90 to 1.03; p = 0.30; I 2 = 6%). According to the results of subgroup analysis, severe or critical patients with CCP showed significant difference in reducing the 28-day mortality of compared with placebo (OR 0.58, 95% CI 0.36 to 0.93, p = 0.02, I 2 = 0%). CCP groups have a significantly shorter duration of MV compared with the control group (weighted MD -1.00, 95% CI -1.86 to -0.14 d p = 0.02, I 2 = 0%). No significant difference was observed in the length of hospital stay, the duration of ICU, and the rate of ICU and MV. There is no conclusive evidence about the safety of CCP. Conclusion: Convalescent plasma can significantly reduce the 28-day mortality of severe or critical COVID-19 patients and the duration of MV. However, more evidence was needed to prove the safety of convalescent plasma.
Collapse
Affiliation(s)
- Huiling Cao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Ming
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Long Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xingwang Zhu
- Department of Pediatrics, Jiulongpo People's Hospital, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
9
|
Kinetics of Nucleocapsid, Spike and Neutralizing Antibodies, and Viral Load in Patients with Severe COVID-19 Treated with Convalescent Plasma. Viruses 2021; 13:v13091844. [PMID: 34578426 PMCID: PMC8473255 DOI: 10.3390/v13091844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
COVID-19 is an ongoing pandemic with high morbidity and mortality. Despite meticulous research, only dexamethasone has shown consistent mortality reduction. Convalescent plasma (CP) infusion might also develop into a safe and effective treatment modality on the basis of recent studies and meta-analyses; however, little is known regarding the kinetics of antibodies in CP recipients. To evaluate the kinetics, we followed 31 CP recipients longitudinally enrolled at a median of 3 days post symptom onset for changes in binding and neutralizing antibody titers and viral loads. Antibodies against the complete trimeric Spike protein and the receptor-binding domain (Spike-RBD), as well as against the complete Nucleocapsid protein and the RNA binding domain (N-RBD) were determined at baseline and weekly following CP infusion. Neutralizing antibody (pseudotype NAb) titers were determined at the same time points. Viral loads were determined semi-quantitatively by SARS-CoV-2 PCR. Patients with low humoral responses at entry showed a robust increase of antibodies to all SARS-CoV-2 proteins and Nab, reaching peak levels within 2 weeks. The rapid increase in binding and neutralizing antibodies was paralleled by a concomitant clearance of the virus within the same timeframe. Patients with high humoral responses at entry demonstrated low or no further increases; however, virus clearance followed the same trajectory as in patients with low antibody response at baseline. Together, the sequential immunological and virological analysis of this well-defined cohort of patients early in infection shows the presence of high levels of binding and neutralizing antibodies and potent clearance of the virus.
Collapse
|