1
|
Rudnik E. Innovative Approaches to Tin Recovery from Low-Grade Secondary Resources: A Focus on (Bio)hydrometallurgical and Solvometallurgical Methods. MATERIALS (BASEL, SWITZERLAND) 2025; 18:819. [PMID: 40004341 PMCID: PMC11857418 DOI: 10.3390/ma18040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Tin, although not considered a critical material in all world regions, is a key material for modern technologies. The projected scarcity of tin in the coming decades emphasizes the need for efficient recycling methods to maintain uninterrupted supply chains. This review article focuses on the recovery of tin from low-grade secondary sources, specifically obsolete printed circuit boards (PCBs) and liquid crystal displays (LCDs). In both types of waste, tin occurs in various concentrations and in different chemical forms-a few percent as metal or alloy in PCBs and several hundred ppm as tin(IV) oxide in LCDs. This article presents pretreatment methods to preconcentrate tin and enhance subsequent leaching. It discusses not only conventional acid and alkaline leaching techniques but also the use of complexing agents and the challenges associated with bioleaching. Due to the dilution of the resulting leachates, advanced methods for tin ion separation and preconcentration before final product recovery are shown. Solvometallurgical methods employing deep eutectic solvents or ionic liquids, are also discussed; although promising, they still remain under development.
Collapse
Affiliation(s)
- Ewa Rudnik
- Faculty on Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
2
|
Golzar-Ahmadi M, Bahaloo-Horeh N, Pourhossein F, Norouzi F, Schoenberger N, Hintersatz C, Chakankar M, Holuszko M, Kaksonen AH. Pathway to industrial application of heterotrophic organisms in critical metals recycling from e-waste. Biotechnol Adv 2024; 77:108438. [PMID: 39218325 DOI: 10.1016/j.biotechadv.2024.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The transition to renewable energies and electric vehicles has triggered an unprecedented demand for metals. Sustainable development of these technologies relies on effectively managing the lifecycle of critical raw materials, including their responsible sourcing, efficient use, and recycling. Metal recycling from electronic waste (e-waste) is of paramount importance owing to ore-exceeding amounts of critical elements and high toxicity of heavy metals and organic pollutants in e-waste to the natural ecosystem and human body. Heterotrophic microbes secrete numerous metal-binding biomolecules such as organic acids, amino acids, cyanide, siderophores, peptides, and biosurfactants which can be utilized for eco-friendly and profitable metal recycling. In this review paper, we presented a critical review of heterotrophic organisms in biomining, and current barriers hampering the industrial application of organic acid bioleaching and biocyanide leaching. We also discussed how these challenges can be surmounted with simple methods (e.g., culture media optimization, separation of microbial growth and metal extraction process) and state-of-the-art biological approaches (e.g., artificial microbial community, synthetic biology, metabolic engineering, advanced fermentation strategies, and biofilm engineering). Lastly, we showcased emerging technologies (e.g., artificially synthesized peptides, siderophores, and biosurfactants) derived from heterotrophs with the potential for inexpensive, low-impact, selective and advanced metal recovery from bioleaching solutions.
Collapse
Affiliation(s)
- Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | | | - Fatemeh Pourhossein
- Research Centre for Health & Life Sciences, Coventry University, Coventry, UK
| | - Forough Norouzi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Nora Schoenberger
- Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, Dresden, Germany
| | - Christian Hintersatz
- Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, Dresden, Germany
| | - Mital Chakankar
- Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, Dresden, Germany
| | - Maria Holuszko
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Western Australia, Australia.
| |
Collapse
|
3
|
Bulgari D, Alias C, Peron G, Ribaudo G, Gianoncelli A, Savino S, Boureghda H, Bouznad Z, Monti E, Gobbi E. Solid-State Fermentation of Trichoderma spp.: A New Way to Valorize the Agricultural Digestate and Produce Value-Added Bioproducts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3994-4004. [PMID: 36735958 PMCID: PMC9999421 DOI: 10.1021/acs.jafc.2c07388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In this study, the agricultural digestate from anaerobic biogas production mixed with food wastes was used as a substrate to grow Trichoderma reesei RUT-C30 and Trichoderma atroviride Ta13 in solid-state fermentation (SSF) and produce high-value bioproducts, such as bioactive molecules to be used as ingredients for biostimulants. The Trichoderma spp. reached their maximum growth after 6 and 3 SSF days, respectively. Both Trichoderma species were able to produce cellulase, esterase, and citric and malic acids, while T. atroviride also produced gibberellins and oxylipins as shown by ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) profiling. Experimental evaluation of germination parameters highlighted a significant promotion of tomato seed germination and root elongation induced by T. atroviride crude extracts from SSF. This study suggests an innovative sustainable use of the whole digestate mixed with agro-food waste as a valuable substrate in fungal biorefineries. Here, it has been applied to produce plant growth-promoting fungi and bioactive molecules for sustainable agriculture.
Collapse
Affiliation(s)
- Daniela Bulgari
- Agri-Food
and Environmental Microbiology Platform, Department of Molecular and
Translational Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Carlotta Alias
- Agri-Food
and Environmental Microbiology Platform, Department of Molecular and
Translational Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
- B+LabNet-Environmental
Sustainability Lab, University of Brescia, Via Branze 45, 25123Brescia, Italy
| | - Gregorio Peron
- Proteomics
Platform, AgroFood Lab, Department of Molecular and Translational
Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Giovanni Ribaudo
- Proteomics
Platform, AgroFood Lab, Department of Molecular and Translational
Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Alessandra Gianoncelli
- Proteomics
Platform, AgroFood Lab, Department of Molecular and Translational
Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Salvatore Savino
- Unit
of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123Brescia, Italy
| | - Houda Boureghda
- Department
of Botany, Laboratory of Phytopathology and Molecular Biology, Ecole Nationale Supérieure Agronomique (ENSA), El Harrach, Algiers16200, Algeria
| | - Zouaoui Bouznad
- Department
of Botany, Laboratory of Phytopathology and Molecular Biology, Ecole Nationale Supérieure Agronomique (ENSA), El Harrach, Algiers16200, Algeria
| | - Eugenio Monti
- Unit
of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123Brescia, Italy
| | - Emanuela Gobbi
- Agri-Food
and Environmental Microbiology Platform, Department of Molecular and
Translational Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| |
Collapse
|
4
|
Editorial for Special Issue "Microorganisms and Organic Waste Valorisation". Microorganisms 2022; 10:microorganisms10081493. [PMID: 35893551 PMCID: PMC9331733 DOI: 10.3390/microorganisms10081493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
|
5
|
Araújo IF, Marinho VHDS, Sena IDS, Curti JM, Ramos RDS, Ferreira RMA, Souto RNP, Ferreira IM. Larvicidal activity against Aedes aegypti and molecular docking studies of compounds extracted from the endophytic fungus Aspergillus sp. isolated from Bertholletia excelsa Humn. & Bonpl. Biotechnol Lett 2022; 44:439-459. [PMID: 35147845 DOI: 10.1007/s10529-022-03220-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/01/2022] [Indexed: 12/27/2022]
Abstract
Endophytic fungi are microorganisms capable of colonizing the interior of plant tissues without causing damage to them. The study of the secondary metabolites produced by their vast biodiversity fungal is relevant for the discovery of new products for biotechnological and agrochemical applications. In addition, extract of the endophytic fungus Aspergillus sp., isolated from the almonds of Bertholletia excelsa Humn & Bonlp collected in the Brazilian Amazon, oviposition deterrent, and larvicidal activity of against Aedes aegypti. In the oviposition deterrence test was observed that females able to lay eggs preferred the control oviposition sites (46.6%). Furthermore, the extract showed larvicidal activity with LC50 26.86 µg/mL at 24 h and 18.75 µg/mL at 48 h. Molecular docking studies showed the compound Aspergillol B a potent larvicide by to inhibit the acetylcholinesterase enzyme (- 7.74 kcal/mol). These results indicate that compounds from secondary metabolites of Aspergillus sp., isolated from almonds of B. excelsa, are useful biological potential against vectors A. aegypti.
Collapse
Affiliation(s)
- Inana F Araújo
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Victor Hugo de S Marinho
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Iracirema da S Sena
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Jhone M Curti
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Ryan da S Ramos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, AP, 68902-280, Brazil
| | - Ricardo M A Ferreira
- Arthropod Laboratory, Collegiate of Biology, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Raimundo N P Souto
- Arthropod Laboratory, Collegiate of Biology, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil
| | - Irlon M Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Collegiate of Chemistry, Federal University of Amapá, Rod. JK, KM 02, Macapá, Amapá, 68902-280, Brazil.
| |
Collapse
|
6
|
It Works! Organic-Waste-Assisted Trichoderma spp. Solid-State Fermentation on Agricultural Digestate. Microorganisms 2022; 10:microorganisms10010164. [PMID: 35056614 PMCID: PMC8780502 DOI: 10.3390/microorganisms10010164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed at valorizing digestate through Trichoderma spp. solid-state fermentation (SSF) to produce a potentially ameliorated fertilizer combined with fungal biomass as a value-added bioproduct. Plant-growth-promoting Trichoderma atroviride Ta13, T. reesei RUT-C30, T. asperellum R, and T. harzianum T-22 were tested on different SSF substrates: whole digestate (WD), digestate dried up with wood sawdust (SSF1), and digestate enriched with food waste and dried up with wood sawdust (SSF2). The fungal biomass was quantified by using a qPCR assay. The growth of the four Trichoderma spp. was only observed on the SSF2 substrate. The highest quantity of mycelium was produced by T. reesei RUT-30 (689.80 ± 80.53 mg/g substrate), followed by T. atroviride Ta13, and T. asperellum R (584.24 ± 13.36 and 444.79 ± 91.02 mg/g substrate). The germination of Lepidium sativum seeds was evaluated in order to assess the phytoxicity of the Trichoderma-enriched substrate. The treatments with 7.5% SSF2-R, 3.75% SSF2-T-22, and 1.8% SSF2-Ta13 equally enhanced the root elongation in comparison to the non-fermented SSF-2. This study demonstrated that digestate, mixed with agro-food waste, was able to support the cultivation of Trichoderma spp., paving the way to the valorization of fermented digestate as a proper biofertilizer.
Collapse
|
7
|
Agro-Industrial Wastes: A Substrate for Multi-Enzymes Production by Cryphonectria parasitica. FERMENTATION 2021. [DOI: 10.3390/fermentation7040279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aims to produce a mix of enzymes through Solid State Fermentation (SSF) of raw materials. Four different, easily available, agro-industrial wastes were evaluated as SSF substrates for enzymes production by Cryphonectria parasitica (Murr.) Barr. environmental strains named CpA, CpB2, CpC4, and CpC7. Among the tested wastes, organic wheat bran for human use and wheat bran for animal feed better supports C. parasitica growth and protease production without any supplements. SDS-PAGE analyses highlighted the presence of three bands corresponding to an extracellular laccase (77 kDa), to the endothiapepsin (37 kDa), and to a carboxylesterase (60.6 kDa). Protease, laccase, and esterase activities by C. parasitica in SSF were evaluated for 15 days, showing the maximum protease activity at day 9 (3955.6 AU/gsf,). Conversely, the best laccase and esterase production was achieved after 15 days. The C. parasitica hypovirulent CpC4 strain showed the highest laccase and esterase activity (93.8 AU/gsf and 2.5 U/gsf, respectively). These results suggest the feasibility of a large-scale production of industrially relevant enzymes by C. parasitica strains in SSF process on low value materials.
Collapse
|