1
|
Mertens-Scholz K, Hoffmann B, Gethmann JM, Brangsch H, Pletz MW, Klaus C. Prevalence of tick-borne bacterial pathogens in Germany-has the situation changed after a decade? Front Cell Infect Microbiol 2024; 14:1429667. [PMID: 39091677 PMCID: PMC11291221 DOI: 10.3389/fcimb.2024.1429667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Tick-borne pathogens, such as Borreliella spp., Rickettsia spp., and Anaplasma spp., are frequently detected in Germany. They circulate between animals and tick vectors and can cause mild to severe diseases in humans. Knowledge about distribution and prevalence of these pathogens over time is important for risk assessment of human and animal health. Methods Ixodes ricinus nymphs were collected at different locations in 2009/2010 and 2019 in Germany and analyzed for tick-borne pathogens by real-time PCR and sequencing. Results Borreliella spp. were detected with a prevalence of 11.96% in 2009/2010 and 13.10% in 2019 with B. afzelii and B. garinii as dominant species. Borrelia miyamotoi was detected in seven ticks and in coinfection with B. afzelii or B. garinii. Rickettsia spp. showed a prevalence of 8.82% in 2009/2010 and 1.68% in 2019 with the exclusive detection of R. helvetica. The prevalence of Anaplasma spp. was 1.00% in 2009/2010 and 7.01% in 2019. A. phagocytophilum was detected in seven tick samples. None of the nymphs were positive for C. burnetii. Discussion Here, observed changes in prevalence were not significant after a decade but require longitudinal observations including parameters like host species and density, climatic factors to improve our understanding of tick-borne diseases.
Collapse
Affiliation(s)
- Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Greifswald-Insel Riems, Germany
| | - Jörn M. Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Greifswald-Insel Riems, Germany
| | - Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Christine Klaus
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Jena, Germany
| |
Collapse
|
2
|
Giesen C, Cifo D, Gomez-Barroso D, Estévez-Reboredo RM, Figuerola J, Herrador Z. The Role of Environmental Factors in Lyme Disease Transmission in the European Union: A Systematic Review. Trop Med Infect Dis 2024; 9:113. [PMID: 38787046 PMCID: PMC11125681 DOI: 10.3390/tropicalmed9050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Lyme disease (LD) is an emergent vector-borne disease caused by Borrelia spp. and transmitted through infected ticks, mainly Ixodes spp. Our objective was to determine meteorological and environmental factors associated with LD transmission in Europe and the effect of climate change on LD. MATERIALS AND METHODS A systematic review following the PRISMA guidelines was performed. We selected studies on LD transmission in the European Union (EU) and the European Economic Area (EEA) published between 2000 and 2022. The protocol was registered in the PROSPERO database. RESULTS We included 81 studies. The impact of environmental, meteorological or climate change factors on tick vectors was studied in 65 papers (80%), and the impact on human LD cases was studied in 16 papers (19%), whereas animal hosts were only addressed in one study (1%). A significant positive relationship was observed between temperature and precipitation and the epidemiology of LD, although contrasting results were found among studies. Other positive factors were humidity and the expansion of anthropized habitats. CONCLUSIONS The epidemiology of LD seems to be related to climatic factors that are changing globally due to ongoing climate change. Unfortunately, the complete zoonotic cycle was not systematically analyzed. It is important to adopt a One Health approach to understand LD epidemiology.
Collapse
Affiliation(s)
- Christine Giesen
- Centro de Salud Internacional Madrid Salud, Ayuntamiento de Madrid, 28006 Madrid, Spain;
| | - Daniel Cifo
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Diana Gomez-Barroso
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| | - Rosa M. Estévez-Reboredo
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
| | - Jordi Figuerola
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Zaida Herrador
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.-B.); (R.M.E.-R.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| |
Collapse
|
3
|
Kazimírová M, Mahríková L, Hamšíková Z, Stanko M, Golovchenko M, Rudenko N. Spatial and Temporal Variability in Prevalence Rates of Members of the Borrelia burgdorferi Species Complex in Ixodes ricinus Ticks in Urban, Agricultural and Sylvatic Habitats in Slovakia. Microorganisms 2023; 11:1666. [PMID: 37512839 PMCID: PMC10383148 DOI: 10.3390/microorganisms11071666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Lyme borreliosis (LB) is the most prevalent tick-borne human infection in Europe, with increasing incidence during the latest decades. Abundant populations of Ixodes ricinus, the main vector of the causative agent, spirochetes from the Borrelia burgdorferi sensu lato (Bbsl) complex, have been observed in urban and suburban areas of Europe, in general, and Slovakia, particularly. Understanding the spread of infectious diseases is crucial for implementing effective control measures. Global changes affect contact rates of humans and animals with Borrelia-infected ticks and increase the risk of contracting LB. The aim of this study was to investigate spatial and temporal variation in prevalence of Bbsl and diversity of its species in questing I. ricinus from three sites representing urban/suburban, natural and agricultural habitat types in Slovakia. Ixodes ricinus nymphs and adults were collected by dragging the vegetation in green areas of Bratislava town (urban/suburban habitat), in the Small Carpathians Mountains (natural habitat) (south-western Slovakia) and in an agricultural habitat at Rozhanovce in eastern Slovakia. Borrelia presence in ticks was detected by PCR and Bbsl species were identified by restriction fragment length polymorphism (RFLP). Borrelia burgdorferi s.l. species in coinfected ticks were identified by reverse line blot. Significant spatial and temporal variability in prevalence of infected ticks was revealed in the explored habitats. The lowest total prevalence was detected in the urban/suburban habitat, whereas higher prevalence was found in the natural and agricultural habitat. Six Bbsl species were detected by RFLP in each habitat type -B. burgdorferi sensu stricto (s.s.), B. afzelii, B. garinii, B. valaisiana, B. lusitaniae and B. spielmanii. Coinfections accounted for 3% of the total infections, whereby B. kurtenbachii was identified by RLB and sequencing in mixed infection with B. burgdorferi s.s, B. garinii and B. valaisiana. This finding represents the first record of B. kurtenbachii in questing I. ricinus in Slovakia and Europe. Variations in the proportion of Bbsl species were found between nymphs and adults, between years and between habitat types. Spatial variations in prevalence patterns and proportion of Bbsl species were also confirmed between locations within a relatively short distance in the urban habitat. Habitat-related and spatial variations in Borrelia prevalence and distribution of Bbsl species are probably associated with the local environmental conditions and vertebrate host spectrum. Due to the presence of Borrelia species pathogenic to humans, all explored sites can be ranked as areas with high epidemiological risk.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Michal Stanko
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
4
|
Wodecka B, Kolomiiets V. Genetic Diversity of Borreliaceae Species Detected in Natural Populations of Ixodes ricinus Ticks in Northern Poland. Life (Basel) 2023; 13:life13040972. [PMID: 37109501 PMCID: PMC10143352 DOI: 10.3390/life13040972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In Europe, Ixodes ricinus tick is the vector of Lyme disease spirochetes and their relatives (Borreliella genus) and Borrelia miyamotoi. However, a newly described tick I. inopinatus with similar biological features and separated from I. ricinus may act as a vector for different Borrelia species. To date, eleven Borreliella species were detected in the natural populations of I. ricinus. Recently, two North American species have been detected in ticks parasitizing bats and red foxes in Europe, i.e., B. lanei and B. californiensis pointing to the necessity for searching for them in natural tick populations. In this study, using the coxI molecular marker only I. ricinus was identified in field-collected ticks with the exception of individual specimens of Haemaphysalis concinna. Using the flaB gene and mag-trnI intergenic spacer as molecular markers 14 Borreliaceae species have been detected with various frequencies in different parts of northern Poland. Among infected ticks, the most frequent were Borreliella (Bl.) afzelii (29.4%) and Bl. garinii (20.0%), followed by Bl. spielmanii, Bl. valaisiana, Bl. lanei, Bl. californiensis, B. miyamotoi, Bl. burgdorferi, Bl. carolinensis, Bl. americana, B. turcica, Bl. lusitaniae, Bl. bissettiae and Bl. finlandensis. Three of the above-mentioned species, i.e., Bl. lanei, Bl. californiensis and B. turcica were detected in this study for the first time in the natural ixodid tick population in Europe. The existence of the newly detected spirochetes increases their total diversity in Europe and points to the necessity of careful identification and establishment of the actual distribution of all Borreliaceae species transmitted by I. ricinus.
Collapse
Affiliation(s)
- Beata Wodecka
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| | - Valentyna Kolomiiets
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| |
Collapse
|
5
|
Köhler CF, Holding ML, Sprong H, Jansen PA, Esser HJ. Biodiversity in the Lyme-light: ecological restoration and tick-borne diseases in Europe. Trends Parasitol 2023; 39:373-385. [PMID: 36890021 DOI: 10.1016/j.pt.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Biodiversity loss and the emergence of zoonotic diseases are two major global challenges. An urgent question is how ecosystems and wildlife communities can be restored whilst minimizing the risk of zoonotic diseases carried by wildlife. Here, we evaluate how current ambitions to restore Europe's natural ecosystems may affect the hazard of diseases vectored by the tick Ixodes ricinus at different scales. We find that effects of restoration efforts on tick abundance are relatively straightforward but that the interacting effects of vertebrate diversity and abundance on pathogen transmission are insufficiently known. Long-term integrated surveillance of wildlife communities, ticks, and their pathogens is needed to understand their interactions and to prevent nature restoration from increasing tick-borne disease (TBD) hazard.
Collapse
Affiliation(s)
- Clara Florentine Köhler
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Maya Louise Holding
- Virology and Pathogenesis Group, UK Health Security Agency, Porton Down, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Hein Sprong
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Patrick A Jansen
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
6
|
15-year Borrelia prevalence and species distribution monitoring in Ixodes ricinus/inopinatus populations in the city of Hanover, Germany. Ticks Tick Borne Dis 2023; 14:102074. [PMID: 36335680 DOI: 10.1016/j.ttbdis.2022.102074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Lyme borreliosis, caused by Borrelia burgdorferi sensu lato (s.l.) spirochaetes, is the most common tick-borne disease (TBD) in the Northern Hemisphere. Rising incidences indicate that its epidemiology may be affected by global changes. Therefore, the current study aimed to assess changes in tick infection rates with Borrelia spp. over a 15-year monitoring period in the city of Hanover, Germany, as a follow-up to previous prevalence studies (years 2005, 2010 and 2015). To assess the epidemiological risk, ticks of the Ixodes ricinus/inopinatus-complex were sampled from April to October 2020 by the flagging method at 10 frequently visited recreation areas in Hanover. Analysis by quantitative real-time PCR of 2100 individual ticks revealed an overall Borrelia prevalence of 25.5% (535/2100). Regarding different tick developmental stages, nymphs showed a significantly lower Borrelia prevalence (18.4% [193/1050]) than adult ticks (32.6% [342/1050]). Comparison with previous years revealed a stable total Borrelia prevalence along with consistent infection rates in the different developmental stages over the 15-year monitoring period. Borrelia species differentiation by Reverse Line Blot was successful in 67.3% of positive ticks collected in 2020, with B. afzelii being the dominating species (59.2% of the differentiated infections), besides B. burgdorferi sensu stricto (s.s.), B. garinii, B. valaisiana, B. spielmanii, B. bavariensis and B. bissettiae and the relapsing fever spirochaete B. miyamotoi. Additionally, the proportion of infections attributed to B. afzelii showed a significant increase in 2020 compared to 2005 and 2015 (59.2% vs. 37.6% and 32.0% of successfully differentiated infections, respectively). Coinfections with Anaplasma phagocytophilum and Rickettsia spp. stayed stable comparing 2020 with previous years. Therefore, although changes in the Borrelia prevalence in questing ticks were not observed throughout the 15-year monitoring period, shifts in Borrelia species distribution may alter the epidemiological risk.
Collapse
|
7
|
Schötta AM, Stelzer T, Stanek G, Stockinger H, Wijnveld M. Bacteria and protozoa with pathogenic potential in Ixodes ricinus ticks in Viennese recreational areas. Wien Klin Wochenschr 2022; 135:177-184. [PMID: 35689113 PMCID: PMC9187151 DOI: 10.1007/s00508-022-02046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/15/2022] [Indexed: 11/09/2022]
Abstract
Ixodes ricinus is the most relevant vector for tick-borne diseases in Austria and responsible for the transmission of Borrelia burgdorferi sensu lato (s. l.), which causes Lyme borreliosis in humans; however, also other bacteria and protozoa can be found in ticks and have the potential of infecting people and animals. In this study we collected ticks in popular recreational areas in the city of Vienna in the years 2019 and 2020 and analyzed them for the presence of such putative pathogenic microorganisms. By using reverse line blot (RLB) hybridization we detected DNA of B. burgdorferi s. l., Rickettsia spp., Babesia spp., Candidatus Neoehrlichia mikurensis (CNM) and Anaplasma phagocytophilum. Moreover, we also screened them for the relapsing fever spirochete Borrelia miyamotoi employing real-time PCR. The most frequently detected pathogens were B. burgdorferi s. l. in 28.6% of the ticks in 2019 and 21.3% of the ticks in 2020. The genus Rickettsia was detected in 13.8% of the ticks from 2019 and only in 4.6% from 2020. Babesia spp. were detected in 5.7% in 2019 and 4.2% in 2020. Furthermore, we detected CNM in 4.0% (2019) and 5.6% (2020), A. phagocytophilum in 0.5% (2019) and 1.3% (2020) and finally B. miyamotoi in 3.3% (2019) and 1.7% (2020). Collectively, we show that various microorganisms are prevalent in ticks collected in Vienna and identify hotspots for B. miyamotoi, which we have detected for the first time in the city.
Collapse
Affiliation(s)
- Anna-Margarita Schötta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Theresa Stelzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Michiel Wijnveld
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Hansford KM, Wheeler BW, Tschirren B, Medlock JM. Questing Ixodes ricinus ticks and Borrelia spp. in urban green space across Europe: A review. Zoonoses Public Health 2022; 69:153-166. [PMID: 35122422 PMCID: PMC9487987 DOI: 10.1111/zph.12913] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
For more than three decades, it has been recognized that Ixodes ricinus ticks occur in urban green space in Europe and that they harbour multiple pathogens linked to both human and animal diseases. Urban green space use for health and well‐being, climate mitigation or biodiversity goals is promoted, often without consideration for the potential impact on tick encounters or tick‐borne disease outcomes. This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp. infections in ticks in urban green space in 24 European countries. It presents data on several risk indicators for Lyme borreliosis and highlights key research gaps and recommendations for future studies. Across Europe, mean density of I. ricinus in urban green space was 6.9 (range; 0.1–28.8) per 100 m2 and mean Borrelia prevalence was 17.3% (range; 3.1%–38.1%). Similar density estimates were obtained for nymphs, which had a Borrelia prevalence of 14.2% (range; 0.5%–86.7%). Few studies provided data on both questing nymph density and Borrelia prevalence, but those that did found an average of 1.7 (range; 0–5.6) Borrelia‐infected nymphs per 100 m2 of urban green space. Although a wide range of genospecies were reported, Borrelia afzelii was the most common in most parts of Europe, except for England where B. garinii was more common. The emerging pathogen Borrelia miyamotoi was also found in several countries, but with a much lower prevalence (1.5%). Our review highlights that I. ricinus and tick‐borne Borrelia pathogens are found in a wide range of urban green space habitats and across several seasons. The impact of human exposure to I. ricinus and subsequent Lyme borreliosis incidence in urban green space has not been quantified. There is also a need to standardize sampling protocols to generate better baseline data for the density of ticks and Borrelia prevalence in urban areas.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | - Benedict W Wheeler
- European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | | | - Jolyon M Medlock
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK.,Health Protection Research Unit in Emerging & Zoonotic Infections, Public Health England, Porton Down, UK
| |
Collapse
|
9
|
Böhmer MM, Ens K, Böhm S, Heinzinger S, Fingerle V. Epidemiological Surveillance of Lyme Borreliosis in Bavaria, Germany, 2013-2020. Microorganisms 2021; 9:microorganisms9091872. [PMID: 34576768 PMCID: PMC8467410 DOI: 10.3390/microorganisms9091872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/12/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease in Germany. Mandatory notification of acute LB manifestations (erythema migrans (EM), neuroborreliosis (NB), and Lyme arthritis (LA)) was implemented in Bavaria on 1 March 2013. We aimed to describe the epidemiological situation and to identify LB risk areas and populations. Therefore, we analyzed LB cases notified from March 2013 to December 2020 and calculated incidence (cases/100,000 inhabitants) by time, place, and person. Overall, 35,458 cases were reported during the study period (EM: 96.7%; NB: 1.7%; LA: 1.8%). The average incidence was 34.3/100,000, but annual incidence varied substantially (2015: 23.2; 2020: 47.4). Marked regional differences at the district level were observed (annual average incidence range: 4–154/100,000). The Bavarian Forest and parts of Franconia were identified as high-risk regions. Additionally, high risk for LB was found in 5–9-year-old males and in 60–69-year-old females. The first group also had the highest risk of a severe disease course. We were able to identify areas and populations in Bavaria with an increased LB risk, thereby providing a basis for targeted measures to prevent LB. Since LB vaccination is currently not available, such measures should comprise (i) avoiding tick bites, (ii) removing ticks rapidly after a bite, and (iii) treating LB early/adequately.
Collapse
Affiliation(s)
- Merle Margarete Böhmer
- Department for Infectious Disease Epidemiology, Taskforce Infectiology, Bavarian Health and Food Safety Authority, Lazarettstrasse 67, 80636 Munich, Germany
- Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-9131-6808-5634
| | - Katharina Ens
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Pettenkofer School of Public Health, Ludwig-Maximilians-University Munich (LMU), 81377 Munich, Germany;
| | - Stefanie Böhm
- Bavarian Health and Food Safety Authority, 80636 Munich, Germany;
| | - Susanne Heinzinger
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (S.H.); (V.F.)
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (S.H.); (V.F.)
- National Reference Centre for Borrelia, 85764 Oberschleissheim, Germany
| |
Collapse
|