1
|
Zheng J, Shi J, Wang D. Diversity of soil fungi and entomopathogenic fungi in subtropical mountain forest in southwest China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13267. [PMID: 38943366 PMCID: PMC11213981 DOI: 10.1111/1758-2229.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/06/2024] [Indexed: 07/01/2024]
Abstract
Till now, the diversity of entomopathogenic fungi in subtropical mountain forest was less studied. Here, the vertical distribution of forest soil fungi, entomopathogenic fungi, and their environmental influencing factors in a subtropical mountain in western China were investigated. Soil samples were collected from four elevations in a subtropical forest in Shaanxi. The results indicated a greater richness of soil fungi at middle elevations and soil fungi were more even at low elevation. Soil pH, available iron, available potassium, total potassium, and available zinc were the most important influencing factors affecting this vertical distribution of fungi. Interestingly, the Isaria genus was predominant while Metarhizium and Beauveria showed decreasing abundance. The presence of Isaria showed a significant positive correlation with both total phosphorus and available iron, while, available zinc was negatively correlated. Metarhizium was influenced by elevation, pH, available phosphorus, and available copper and Beauveria was influenced by soil organic carbon, total nitrogen, total potassium, available potassium, and available zinc. Overall, as environmental factors affecting soil fungi, elevation, and plant species diversity were less important than soil physical and chemical properties. The virulence of isolated entomopathogenic fungi were tested against larvae of Tenebrio molitor, with mortality ranging from 31.11% to 100%. The above findings provide valuable data to deepen our understanding of the diversity of entomopathogenic fungi in subtropical mountain forests.
Collapse
Affiliation(s)
- Jiyang Zheng
- Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinduo Shi
- Forest Bureau of Ankang CityAnkangShaanxiChina
| | - Dun Wang
- Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
2
|
Kryukov VY, Glupov VV. Special Issue on "Entomopathogenic Fungi: Ecology, Evolution, Adaptation": An Editorial. Microorganisms 2023; 11:1494. [PMID: 37374996 DOI: 10.3390/microorganisms11061494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Entomopathogenic endophytic ascomycetes are the most widespread and commercially promising fungi and are used to solve many problems in basic and applied research in ecology, evolution, and agricultural sciences [...].
Collapse
Affiliation(s)
- Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| |
Collapse
|
3
|
Zhao J, Chen Y, Keyhani NO, Wang C, Li Y, Pu H, Li J, Liu S, Lai P, Zhu M, He X, Cai S, Guan X, Qiu J. Isolation of a highly virulent Metarhizium strain targeting the tea pest, Ectropis obliqua. Front Microbiol 2023; 14:1164511. [PMID: 37256050 PMCID: PMC10226365 DOI: 10.3389/fmicb.2023.1164511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Tea is one of the most widely consumed beverages around the world. Larvae of the moth, Ectropis obliqua Prout (Geometridae, Lepidoptera), are one of the most destructive insect pests of tea in China. E. obliqua is a polyphagus insect that is of increasing concern due to the development of populations resistant to certain chemical insecticides. Microbial biological control agents offer an environmentally friendly and effective means for insect control that can be compatible with "green" and organic farming practices. Methods To identify novel E. obliqua biological control agents, soil and inset cadaver samples were collected from tea growing regions in the Fujian province, China. Isolates were analyzed morphologically and via molecular characterization to identity them at the species level. Laboratory and greenhouse insect bioassays were used to determine the effectiveness of the isolates for E. obliqua control. Results Eleven isolates corresponding to ten different species of Metarhizium were identified according to morphological and molecular analyses from soil and/or insect cadavers found on tea plants and/or in the surrounding soil sampled from eight different regions within the Fujian province, China. Four species of Metarhizium including M. clavatum, M. indigoticum, M. pemphigi, and M. phasmatodeae were documented for the first time in China, and the other species were identified as M. anisopliae, M. brunneum, M. lepidiotae, M. majus, M. pinghaense, and M. robertsii. Insect bioassays of the eleven isolates of Metarhizium revealed significant variation in the efficacy of each isolate to infect and kill E. obliqua. Metarhizium pingshaense (MaFZ-13) showed the highest virulence reaching a host target mortality rate of 93% in laboratory bioassays. The median lethal concentration (LC50) and median lethal time (LT50) values of M. pingshaense MaFZ-13 were 9.6 × 104 conidia/mL and 4.8 days, respectively. Greenhouse experiments and a time-dose-mortality (TDM) models were used to further evaluate and confirm the fungal pathogenic potential of M. pingshaense MaFZ-13 against E. obliqua larvae. Discussion Isolation of indigenous microbial biological control agents targeting specific pests is an effective approach for collecting resources that can be exploited for pest control with lowered obstacles to approval and commercialization. Our data show the presence of four different previously unreported Metarhizium species in China. Bioassays of the eleven different Metarhizium strains isolated revealed that each could infect and kill E. obliqua to different degrees with the newly isolated M. pingshaense MaFZ-13 strain representing a particularly highly virulent isolate potentially applicable for the control of E. obliqua larvae.
Collapse
Affiliation(s)
- Jie Zhao
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuxi Chen
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Cong Wang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yichen Li
- Dulwich International High School Suzhou, Suzhou, Jiangsu, China
| | - Huili Pu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jincheng Li
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sen Liu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Pengyu Lai
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mengjia Zhu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xueyou He
- Fujian Academy of Forestry, Fuzhou, Fujian, China
| | - Shouping Cai
- Fujian Academy of Forestry, Fuzhou, Fujian, China
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junzhi Qiu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Graf T, Scheibler F, Niklaus PA, Grabenweger G. From lab to field: biological control of the Japanese beetle with entomopathogenic fungi. FRONTIERS IN INSECT SCIENCE 2023; 3:1138427. [PMID: 38469508 PMCID: PMC10926434 DOI: 10.3389/finsc.2023.1138427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 03/13/2024]
Abstract
The Japanese beetle, Popillia japonica, is an invasive scarab and listed as quarantine organism in many countries worldwide. Native to Japan, it has invaded North America, the Azores, and recently mainland Europe. Adults are gregarious and cause agricultural and horticultural losses by feeding on leaves, fruits, and flowers of a wide range of crops and ornamental plants. Larvae feed belowground and damage grassland. To date, no efficient and environmentally friendly control measure is available. Larval populations of other scarab species such as Phyllopertha horticola and Melolontha melolontha are controlled by applying spores of the entomopathogenic fungi Metarhizium brunneum and Beauveria brongniartii to larval habitats. Here, we tested this control strategy against Japanese beetle larvae in grasslands, as well as spore spray applications against adults in crops. Using both, large-scale field experiments and inoculation experiments in the laboratory, we assess the efficacy of registered fungal strains against Japanese beetle larvae and adults. Metarhizium brunneum BIPESCO 5 established and persisted in the soil of larval habitats and on the leaves of adult's host plants after application. However, neither larval nor adult population sizes were reduced at the study sites. Laboratory experiments showed that larvae are not susceptible to M. brunneum ART 212, M. brunneum BIPESCO 5, and B. brongniartii BIPESCO 2. In contrast, adults were highly susceptible to all three strains. When blastospores were directly injected into the hemolymph, both adults and larvae showed elevated mortality rates, which suggests that the cuticle plays an important role in determining the difference in susceptibility of the two life stages. In conclusion, we do not see potential in adapting the state-of-the-art control strategy against native scarabs to Japanese beetle larvae. However, adults are susceptible to the tested entomopathogenic fungi in laboratory settings and BIPESCO 5 conidiospores survived for more than three weeks in the field despite UV-radiation and elevated temperatures. Hence, control of adults using fungi of the genera Beauveria or Metarhizium is more promising than larval control. Further research on efficient application methods and more virulent and locally adapted fungal strains will help to increase efficacy of fungal treatments for the control of P. japonica.
Collapse
Affiliation(s)
- Tanja Graf
- Extension Arable Crops, Department of Plants and Plant Products, Agroscope, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Franziska Scheibler
- Extension Arable Crops, Department of Plants and Plant Products, Agroscope, Zurich, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Pascal A. Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Giselher Grabenweger
- Extension Arable Crops, Department of Plants and Plant Products, Agroscope, Zurich, Switzerland
| |
Collapse
|
5
|
Barzanti GP, Enkerli J, Benvenuti C, Strangi A, Mazza G, Torrini G, Simoncini S, Paoli F, Marianelli L. Genetic variability of Metarhizium isolates from the Ticino Valley Natural Park (Northern Italy) as a possible microbiological resource for the management of Popillia japonica. J Invertebr Pathol 2023; 197:107891. [PMID: 36716929 DOI: 10.1016/j.jip.2023.107891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
The natural occurrence of entomopathogenic fungi (EPF) was investigated along the Ticino River (Ticino River Natural Park, Novara Province, Piedmont, Italy), at the center of the area of the first settlement of the invasive alien pest Popillia japonica. Using Zimmermann's "Galleria bait method", EPF were successfully isolated from 83 out of 155 soil samples from different habitats (perennial, cultivated, or uncultivated meadows, woodlands, and riverbanks). Sequencing of the 5' end of the Translation Elongation Factor 1 alfa (5'-TEF) region allowed the assignment of 94% of the isolates to Metarhizium spp., while 8% and 7% were assigned to Beauveria spp. and Paecilomyces spp., respectively. Four Metarhizium species were identified: Metarhizium robertsii was the most common one (61.5% of the isolates), followed by M. brunneum (24.4%), M. lepidiotae (9%), and M. guizhouense (5.1%). Microsatellite marker analysis of the Metarhizium isolates revealed the presence of 27 different genotypes, i.e., 10 genotypes among M. robertsii, 8 among M. brunneum, 5 among M. lepidiotae, and 4 among M. guizhouense. Metarhizium brunneum appeared to be associated with woodlands and more acid soils, while the other species showed no clear association with a particular habitat. Laboratory virulence tests against P. japonica 3rd instar larvae allowed the identification of one M. robertsii isolate that showed efficacy as high as 80.3%. The importance of this kind of study in the frame of eco-friendly microbiological control is discussed.
Collapse
Affiliation(s)
- Gian Paolo Barzanti
- CREA Research Centre for Plant Protection and Certification, 50125 Florence, Italy.
| | - Jürg Enkerli
- AGROSCOPE Institute for Sustainability Sciences ISS, Molecular Ecology, 8046 Zürich, Switzerland
| | - Claudia Benvenuti
- CREA Research Centre for Plant Protection and Certification, 50125 Florence, Italy
| | - Agostino Strangi
- CREA Research Centre for Plant Protection and Certification, 50125 Florence, Italy
| | - Giuseppe Mazza
- CREA Research Centre for Plant Protection and Certification, 50125 Florence, Italy
| | - Giulia Torrini
- CREA Research Centre for Plant Protection and Certification, 50125 Florence, Italy
| | - Stefania Simoncini
- CREA Research Centre for Plant Protection and Certification, 50125 Florence, Italy
| | - Francesco Paoli
- CREA Research Centre for Plant Protection and Certification, 50125 Florence, Italy
| | - Leonardo Marianelli
- CREA Research Centre for Plant Protection and Certification, 50125 Florence, Italy
| |
Collapse
|
6
|
Hernández I, Sant C, Martínez R, Almazán M, Caminal M, Quero V, El-Adak M, Casanova A, Garrido-Jurado I, Yousef-Yousef M, Quesada-Moraga E, Lara JM, Fernández C. Persistence of Metarhizium brunneum (Ascomycota: Hypocreales) in the Soil Is Affected by Formulation Type as Shown by Strain-Specific DNA Markers. J Fungi (Basel) 2023; 9:jof9020229. [PMID: 36836343 PMCID: PMC9966207 DOI: 10.3390/jof9020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The genus Metarhizium has an increasingly important role in the development of Integrated Pest Control against Tephritid fruit flies in aerial sprays targeting adults and soil treatments targeting preimaginals. Indeed, the soil is considered the main habitat and reservoir of Metarhizium spp., which may be a plant-beneficial microorganism due to its lifestyle as an endophyte and/or rhizosphere-competent fungus. This key role of Metarhizium spp. for eco-sustainable agriculture highlights the priority of developing proper monitoring tools not only to follow the presence of the fungus in the soil and to correlate it with its performance against Tephritid preimaginals but also for risk assessment studies for patenting and registering biocontrol strains. The present study aimed at understanding the population dynamics of M. brunneum strain EAMb 09/01-Su, which is a candidate strain for olive fruit fly Bactrocera oleae (Rossi, 1790) preimaginal control in the soil, when applied to the soil at the field using different formulations and propagules. For this, strain-specific DNA markers were developed and used to track the levels of EAMb 09/01-Su in the soil of 4 field trials. The fungus persists over 250 days in the soil, and the levels of the fungus remained higher when applied as an oil-dispersion formulation than when applied as a wettable powder or encapsulated microsclerotia. Peak concentrations of EAMb 09/01-Su depend on the exogenous input and weakly on environmental conditions. These results will help us to optimize the application patterns and perform accurate risk assessments during further development of this and other entomopathogenic fungus-based bioinsecticides.
Collapse
Affiliation(s)
- Iker Hernández
- Futureco Bioscience, Avda. Del Cadí 19-23, 08799 Olèrdola, Spain
- Correspondence: ; Tel.: +34-938182891
| | - Clara Sant
- Futureco Bioscience, Avda. Del Cadí 19-23, 08799 Olèrdola, Spain
| | - Raquel Martínez
- Futureco Bioscience, Avda. Del Cadí 19-23, 08799 Olèrdola, Spain
| | - Marta Almazán
- Futureco Bioscience, Avda. Del Cadí 19-23, 08799 Olèrdola, Spain
| | - Marta Caminal
- Futureco Bioscience, Avda. Del Cadí 19-23, 08799 Olèrdola, Spain
| | - Víctor Quero
- Futureco Bioscience, Avda. Del Cadí 19-23, 08799 Olèrdola, Spain
| | - Mohammed El-Adak
- Futureco Bioscience, Avda. Del Cadí 19-23, 08799 Olèrdola, Spain
| | - Albert Casanova
- Futureco Bioscience, Avda. Del Cadí 19-23, 08799 Olèrdola, Spain
| | | | | | | | - José Manuel Lara
- Futureco Bioscience, Avda. Del Cadí 19-23, 08799 Olèrdola, Spain
| | | |
Collapse
|
7
|
Peng ZY, Huang ST, Chen JT, Li N, Wei Y, Nawaz A, Deng SQ. An update of a green pesticide: Metarhizium anisopliae. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2147224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zhe-Yu Peng
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Shu-Ting Huang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jia-Ting Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ni Li
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Yong Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Asad Nawaz
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
8
|
Biological Diabrotica Management and Monitoring of Metarhizium Diversity in Austrian Maize Fields Following Mass Application of the Entomopathogen Metarhizium brunneum. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inundative mass application of Metarhizium brunneum BIPESCO 5 (Hypocreales, Clavicipitaceae) is used for the biological control of Diabrotica v. virgifera (Coleoptera, Chrysomelidae). Long-term field trials were performed in three Austrian maize fields—with different cultivation techniques and infestation rates—in order to evaluate the efficacy of the treatment to control the pest larvae. In addition, the indigenous Metarhizium spp. population structure was assessed to compare the different field sites with BIPESCO 5 mass application. Annual application of the product Granmet-PTM (Metarhizium colonized barley kernels) significantly increased the density of Metarhizium spp. in the treated soil above the upper natural background level of 1000 colony forming units per gram dry weight soil. Although a decrease in the pest population over time was not achieved in heavily infested areas, less damage occurred in treated field sites in comparison to control sites. The Metarhizium population structure was significantly different between the treated field sites. Results showed that inundative mass application should be repeated regularly to achieve good persistence of the biological control agent, and indicated that despite intensive applications, indigenous populations of Metarhizium spp. can coexist in these habitats. To date, crop rotation remains the method of choice for pest reduction in Europe, however continuous and preventive application of M. brunneum may also present an alternative for the successful biological control of Diabrotica.
Collapse
|