1
|
Rawas S, Al Hakawati N, Mcheik A, El S El Badan D. Micromeria barbata for targeting MRSA virulence: In silico and in vitro studies. Heliyon 2025; 11:e41536. [PMID: 39850410 PMCID: PMC11754165 DOI: 10.1016/j.heliyon.2024.e41536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
The present study reports the characterization of the phytochemical content and the antibacterial activity of ethanolic extracts from the leaves (LE) and stems (SE) of Micromeria barbata (M.barbata) against Methicillin resistant Staphylococcus aureus (MRSA). Important functional groups were determined by analyzing the FTIR spectra of LE and SE. The phytochemical profiles were analyzed by GC-MS, and these characterized the chemicals according to retention periods and peak regions. The binding affinities of discovered compounds with the MRSA SarA and CrtM proteins were evaluated using molecular docking approach. Assays for biofilm formation, MIC, MBC, and agar well diffusion were used to assess the antimicrobial activity. From the FTIR spectra, hydroxyl group alkanes, amides, and aromatic constituents were identified. Nine distinct substances were obtained from GC-MS analysis;, including piperitenone cyclohexene, palmitic acid, safranal, and oleic acid in SE, and iso-menthone, oleic acid, 1-pentanol, kumarone, and benzene in LE. Stronger binding affinities between LE compounds and the SarA protein were obtained from molecular docking with ΔG values ranged from -10.9 to -11.6 were higher compared to SE compounds. Antimicrobial findings showed that SE and LE exhibited an antimicrobial effect against S. aureus with 15 and 20 mm respectively as inhibition zones. MIC values for LE and SE were 6.25 mg/ml and 12.5 mg/ml, respectively. With LE showing greater effectiveness, both extracts exhibited concentration-dependent reduction of biofilm formation and bactericidal activity. Extracts of M. barbata, notably the leaves, have significant antibacterial activity against S. aureus, suggesting potential applications in the developing of novel antibacterial treatments.
Collapse
Affiliation(s)
- Shiraz Rawas
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli, 1300, Lebanon
| | - Nawal Al Hakawati
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli, 1300, Lebanon
| | - Amale Mcheik
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O.Box 13–5053, Chouran Beirut, 1102 2801, Beirut, Lebanon
| | - Dalia El S El Badan
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli, 1300, Lebanon
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Mudgil U, Khullar L, Chadha J, Prerna, Harjai K. Beyond antibiotics: Emerging antivirulence strategies to combat Pseudomonas aeruginosa in cystic fibrosis. Microb Pathog 2024; 193:106730. [PMID: 38851361 DOI: 10.1016/j.micpath.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.
Collapse
Affiliation(s)
- Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Zikeli F, Jusic J, Palocci C, Mugnozza GS, Romagnoli M. Spray Coating of Wood with Nanoparticles from Lignin and Polylactic Glycolic Acid Loaded with Thyme Essential Oils. Polymers (Basel) 2024; 16:947. [PMID: 38611206 PMCID: PMC11013818 DOI: 10.3390/polym16070947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Ensuring the longevity of wooden constructions depends heavily on the preservation process. However, several traditional preservation methods involving fossil-based compounds have become outdated because they pose a significant risk to the environment and to human health. Therefore, the use of bio-based and bioactive solutions, such as essential oils, has emerged as a more sustainable alternative in protecting wood from biotic attacks. The entrapment of essential oils in polymeric carrier matrices provides protection against oxidation and subsequent degradation or rapid evaporation, which implies the loss of their biocidal effect. In this work, lignin as well as PLGA nanoparticles containing the essential oils from two different thyme species (Thymus capitatus and T. vulgaris) were applied on beech wood samples using spray coating. The prepared coatings were investigated using FTIR imaging, SEM, as well as LSM analysis. Release experiments were conducted to investigate the release behavior of the essential oils from their respective lignin and PLGA carrier materials. The study found that lignin nanoparticles were more effective at trapping and retaining essential oils than PLGA nanoparticles, despite having larger average particle diameters and a more uneven particle size distribution. An analysis of the lignin coatings showed that they formed a uniform layer that covered most of the surface pores. PLGA nanoparticles formed a film-like layer on the cell walls, and after leaching, larger areas of native wood were evident on the wood samples treated with PLGA NPs compared to the ones coated with lignin NPs. The loading capacity and efficiency varied with the type of essential oil, while the release behaviors were similar between the two essential oil types applied in this study.
Collapse
Affiliation(s)
- Florian Zikeli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| | - Jasmina Jusic
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
- Fraunhofer, Via Alessandro Volta 13A, 39100 Bozen, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy;
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giuseppe Scarascia Mugnozza
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| |
Collapse
|
4
|
Artini M, Papa R, Vrenna G, Trecca M, Paris I, D’Angelo C, Tutino ML, Parrilli E, Selan L. Antarctic Marine Bacteria as a Source of Anti-Biofilm Molecules to Combat ESKAPE Pathogens. Antibiotics (Basel) 2023; 12:1556. [PMID: 37887257 PMCID: PMC10604463 DOI: 10.3390/antibiotics12101556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The ESKAPE pathogens, including bacteria such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, pose a global health threat due to their ability to resist antimicrobial drugs and evade the immune system. These pathogens are responsible for hospital-acquired infections, especially in intensive care units, and contribute to the growing problem of multi-drug resistance. In this study, researchers focused on exploring the potential of Antarctic marine bacteria as a source of anti-biofilm molecules to combat ESKAPE pathogens. Four Antarctic bacterial strains were selected, and their cell-free supernatants were tested against 60 clinical ESKAPE isolates. The results showed that the supernatants did not exhibit antimicrobial activity but effectively prevented biofilm formation and dispersed mature biofilms. This research highlights the promising potential of Antarctic bacteria in producing compounds that can counteract biofilms formed by clinically significant bacterial species. These findings contribute to the development of new strategies for preventing and controlling infections caused by ESKAPE pathogens.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Irene Paris
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| |
Collapse
|
5
|
Xie Y, Zhang C, Mei J, Xie J. Antimicrobial Effect of Ocimum gratissimum L. Essential Oil on Shewanella putrefaciens: Insights Based on the Cell Membrane and External Structure. Int J Mol Sci 2023; 24:11066. [PMID: 37446243 DOI: 10.3390/ijms241311066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The main objective of this study was to assess the in vitro antibacterial effectiveness of Ocimum gratissimum L. essential oil (OGEO) against Shewanella putrefaciens. The minimum inhibitory concentration and minimum bactericidal concentration of OGEO acting on S. putrefaciens were both 0.1% and OGEO could inhibit the growth of S. putrefaciens in a dose-dependent manner. The restraint of the biofilm growth of S. putrefaciens was found in the crystal violet attachment assay and confocal laser scanning microscopy. The disruption of cell membranes and exudation of contents in S. putrefaciens with OGEO treatment were observed by scanning electron microscopy, hemolysis and ATPase activity. The results demonstrated that OGEO had a positive inhibitory effect on the growth of S. putrefaciens, which primarily developed its antibacterial function against S. putrefaciens by disrupting the formation of biofilms and cell membranes. This study could provide a new method of inhibiting the spoilage of food in which the dominant spoilage bacteria are S. putrefaciens.
Collapse
Affiliation(s)
- Yao Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chi Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
6
|
Zikeli F, Vettraino AM, Biscontri M, Bergamasco S, Palocci C, Humar M, Romagnoli M. Lignin Nanoparticles with Entrapped Thymus spp. Essential Oils for the Control of Wood-Rot Fungi. Polymers (Basel) 2023; 15:2713. [PMID: 37376359 DOI: 10.3390/polym15122713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
After decades of utilization of fossil-based and environmentally hazardous compounds for wood preservation against fungal attack, there is a strong need to substitute those compounds with bio-based bioactive solutions, such as essential oils. In this work, lignin nanoparticles containing four essential oils from thyme species (Thymus capitatus, Coridothymus capitatus, T. vulgaris, and T. vulgaris Demeter) were applied as biocides in in vitro experiments to test their anti-fungal effect against two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and two brown-rot fungi (Poria monticola and Gloeophyllum trabeum). Entrapment of essential oils provided a delayed release over a time frame of 7 days from the lignin carrier matrix and resulted in lower minimum inhibitory concentrations of the essential oils against the brown-rot fungi (0.30-0.60 mg/mL), while for the white-rot fungi, identical concentrations were determined compared with free essential oils (0.05-0.30 mg/mL). Fourier Transform infrared (FTIR) spectroscopy was used to assess the fungal cell wall changes in the presence of essential oils in the growth medium. The results regarding brown-rot fungi present a promising approach for a more effective and sustainable utilization of essential oils against this class of wood-rot fungi. In the case of white-rot fungi, lignin nanoparticles, as essential oils delivery vehicles, still need optimization in their efficacy.
Collapse
Affiliation(s)
- Florian Zikeli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Anna Maria Vettraino
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Margherita Biscontri
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Sara Bergamasco
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Miha Humar
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
7
|
Wira Septama A, Arvia Chiara M, Turnip G, Nur Tasfiyati A, Triana Dewi R, Anggrainy Sianipar E, Jaisi A. Essential Oil of Zingiber cassumunar Roxb. and Zingiber officinale Rosc.: A Comparative Study on Chemical Constituents, Antibacterial Activity, Biofilm Formation, and Inhibition of Pseudomonas aeruginosa Quorum Sensing System. Chem Biodivers 2023; 20:e202201205. [PMID: 37202876 DOI: 10.1002/cbdv.202201205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023]
Abstract
Pseudomonas aeruginosa can regulate its pathogenicity via quorum sensing (QS) system. Zingiber cassumunar and Z. officinale have been used for the treatment of infectious diseases. The study aimed to evaluate and compare the chemical constituents, antibacterial, and QS inhibitor of Z. cassumunar essential oils (ZCEO) and Z. officinale essential oils (ZOEO). The chemical constituent was analysed using GC/MS. Broth microdilution and spectrophotometry analysis were used to evaluate their antibacterial and QS inhibitor activities. The main constituent of ZOEO with percent composition above 6 % (α-curcumene, α-zingiberene, β-sesquiphellandrene, and β-bisabolene, α-citral, and α-farnesene) were exist in a very minimal percentage less than 0.7 % in Z. cassumunar. All major components of ZCEO with percentages higher than 5 % (terpinen-4-ol, sabinene, γ-terpinene) were present in low proportion (<1.18 %) in Z. officinale. ZCEO demonstrated moderate antibacterial activity against P. aeruginosa. The combination of ZCEO and tetracycline showed a synergistic effect (FICI of 0.5). ZCEO exhibited strong activity in inhibiting biofilm formation. ZCEO at1 / 2 ${{ 1/2 }}$ MIC (62.5 μg/mL) was able to reduce pyoverdine, pyocyanin, and proteolytic activity. This is the first report on the activity of ZCEO in the inhibition of P. aeruginosa QS system and it may be used to control the pathogenicity of P. aeruginosa.
Collapse
Affiliation(s)
- Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Monika Arvia Chiara
- Department of Pharmacy, School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, 14440, Jakarta, Indonesia
| | - Gabriel Turnip
- Department of Pharmacy, School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, 14440, Jakarta, Indonesia
| | - Aprilia Nur Tasfiyati
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Erlia Anggrainy Sianipar
- Department of Pharmacy, School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, 14440, Jakarta, Indonesia
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
8
|
Chemical Composition, Antioxidant, and Antibiofilm Properties of Essential Oil from Thymus capitatus Plants Organically Cultured on the Greek Island of Lemnos. Molecules 2023; 28:molecules28031154. [PMID: 36770821 PMCID: PMC9919994 DOI: 10.3390/molecules28031154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Essential oils (EOs) are mixtures of volatile plant secondary metabolites and have been exploited by humans for thousands of years for various purposes because of their many bioactivities. In this study, the EO from Thymus capitatus, a thyme species organically cultured on the Greek Island of Lemnos, was analyzed for its chemical composition (through GC-FID and GC-MS), antioxidant activity (AA), and total phenolic content (TPC), as well as its antimicrobial and antibiofilm actions against three important foodborne bacterial pathogens (Salmonella enterica ser. Typhimurium, Listeria monocytogenes, and Yersinia enterocolitica). For the latter investigations, the minimum inhibitory concentrations (MICs) and minimum biofilm inhibitory concentrations (MBICs) of the EO against the planktonic and biofilm growth of each pathogen were determined, together with the minimum biofilm eradication concentrations (MBECs). Results revealed that T. capitatus EO was rich in thymol, p-cymene, and carvacrol, presenting high AA and TPC (144.66 μmol TroloxTM equivalents and 231.32 mg gallic acid equivalents per g of EO, respectively), while its MICs and MBICs ranged from 0.03% to 0.06% v/v and 0.03% to 0.13% v/v, respectively, depending on the target pathogen. The EO was able to fully destroy preformed (mature) biofilms of all three pathogenic species upon application for 15 min, with MBECs ranging from 2.00 to 6.25% v/v. Overall, the results demonstrate that the EO of organically cultured T. capitatus presents strong antioxidant, antibacterial, and antibiofilm properties and could, therefore, be further exploited as a functional and antimicrobial natural formulation for food and health applications.
Collapse
|
9
|
Artini M, Imperlini E, Buonocore F, Relucenti M, Porcelli F, Donfrancesco O, Tuccio Guarna Assanti V, Fiscarelli EV, Papa R, Selan L. Anti-Virulence Potential of a Chionodracine-Derived Peptide against Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Int J Mol Sci 2022; 23:13494. [PMID: 36362282 PMCID: PMC9657651 DOI: 10.3390/ijms232113494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from antibiotics. Hence, there is a need for innovative approaches that are able to counteract these virulence factors, which play a pivotal role, especially in chronic infections. In this context, antimicrobial peptides are emerging drugs showing a broad spectrum of antibacterial activity. Here, we tested the anti-virulence activity of a chionodracine-derived peptide (KHS-Cnd) on five P. aeruginosa clinical isolates from cystic fibrosis patients. We demonstrated that KHS-Cnd impaired biofilm development and caused biofilm disaggregation without affecting bacterial viability in nearly all of the tested strains. Ultrastructural morphological analysis showed that the effect of KHS-Cnd on biofilm could be related to a different compactness of the matrix. KHS-Cnd was also able to reduce adhesion to pulmonary cell lines and to impair the invasion of host cells by P. aeruginosa. A cytotoxic effect of KHS-Cnd was observed only at the highest tested concentration. This study highlights the potential of KHS-Cnd as an anti-biofilm and anti-virulence molecule against P. aeruginosa clinical strains.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Esther Imperlini
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Fernando Porcelli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Artini M, Vrenna G, Trecca M, Tuccio Guarna Assanti V, Fiscarelli EV, Papa R, Selan L. Serratiopeptidase Affects the Physiology of Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Int J Mol Sci 2022; 23:12645. [PMID: 36293502 PMCID: PMC9604282 DOI: 10.3390/ijms232012645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 09/25/2023] Open
Abstract
Pseudomonas aeruginosa is frequently involved in cystic fibrosis (CF) airway infections. Biofilm, motility, production of toxins and the invasion of host cells are different factors that increase P. aeruginosa's virulence. The sessile phenotype offers protection to bacterial cells and resistance to antimicrobials and host immune attacks. Motility also contributes to bacterial colonization of surfaces and, consequently, to biofilm formation. Furthermore, the ability to adhere is the prelude for the internalization into lung cells, a common immune evasion mechanism used by most intracellular bacteria, such as P. aeruginosa. In previous studies we evaluated the activity of metalloprotease serratiopeptidase (SPEP) in impairing virulence-related properties in Gram-positive bacteria. This work aimed to investigate SPEP's effects on different physiological aspects related to the virulence of P. aeruginosa isolated from CF patients, such as biofilm production, pyoverdine and pyocyanin production and invasion in alveolar epithelial cells. Obtained results showed that SPEP was able to impair the attachment to inert surfaces as well as adhesion/invasion of eukaryotic cells. Conversely, SPEP's effect on pyocyanin and pyoverdine production was strongly strain-dependent, with an increase and/or a decrease of their production. Moreover, SPEP seemed to increase swarming motility and staphylolytic protease production. Our results suggest that a large number of clinical strains should be studied in-depth before drawing definitive conclusions. Why different strains sometimes react in opposing ways to a specific treatment is of great interest and will be the object of future studies. Therefore, SPEP affects P. aeruginosa's physiology by differently acting on several bacterial factors related to its virulence.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Artini M, Papa R, Sapienza F, Božović M, Vrenna G, Tuccio Guarna Assanti V, Sabatino M, Garzoli S, Fiscarelli EV, Ragno R, Selan L. Essential Oils Biofilm Modulation Activity and Machine Learning Analysis on Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Microorganisms 2022; 10:microorganisms10050887. [PMID: 35630332 PMCID: PMC9145053 DOI: 10.3390/microorganisms10050887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is often involved in airway infections of cystic fibrosis (CF) patients. It persists in the hostile CF lung environment, inducing chronic infections due to the production of several virulence factors. In this regard, the ability to form a biofilm plays a pivotal role in CF airway colonization by P. aeruginosa. Bacterial virulence mitigation and bacterial cell adhesion hampering and/or biofilm reduced formation could represent a major target for the development of new therapeutic treatments for infection control. Essential oils (EOs) are being considered as a potential alternative in clinical settings for the prevention, treatment, and control of infections sustained by microbial biofilms. EOs are complex mixtures of different classes of organic compounds, usually used for the treatment of upper respiratory tract infections in traditional medicine. Recently, a wide series of EOs were investigated for their ability to modulate biofilm production by different pathogens comprising S. aureus, S. epidermidis, and P. aeruginosa strains. Machine learning (ML) algorithms were applied to develop classification models in order to suggest a possible antibiofilm action for each chemical component of the studied EOs. In the present study, we assessed the biofilm growth modulation exerted by 61 commercial EOs on a selected number of P. aeruginosa strains isolated from CF patients. Furthermore, ML has been used to shed light on the EO chemical components likely responsible for the positive or negative modulation of bacterial biofilm formation.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Mijat Božović
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy; (V.T.G.A.); (E.V.F.)
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy; (V.T.G.A.); (E.V.F.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
- Società Italiana Ricerca Oli Essenziali, Viale Regina Elena 299, 00161 Roma, Italy
- Correspondence: (R.R.); (L.S.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
- Correspondence: (R.R.); (L.S.)
| |
Collapse
|
12
|
Spengler G, Gajdács M, Donadu MG, Usai M, Marchetti M, Ferrari M, Mazzarello V, Zanetti S, Nagy F, Kovács R. Evaluation of the Antimicrobial and Antivirulent Potential of Essential Oils Isolated from Juniperus oxycedrus L. ssp. macrocarpa Aerial Parts. Microorganisms 2022; 10:758. [PMID: 35456809 PMCID: PMC9032431 DOI: 10.3390/microorganisms10040758] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
As a consequence of the worsening situation with multidrug-resistant (MDR) pathogens and a disparity in the commercialization of novel antimicrobial agents, scientists have been prompted to seek out new compounds with antimicrobial activity from a wide range of sources, including medicinal plants. In the present study, the antibacterial, antifungal, anti-virulence, and resistance-modulating properties of the essential oil from the Sardinian endemic Juniperus oxycedrus L. ssp. macrocarpa aerial parts were evaluated. The GC/MS analysis showed that the main compounds in the oil were α-pinene (56.63 ± 0.24%), limonene (14.66 ± 0.11%), and β-pinene (13.42 ± 0.09%). The essential oil showed potent antibacterial activity against Gram-positive bacteria (0.25-2 v/v%) and Salmonella spp. (4 v/v%). The strongest fungicidal activity was recorded against Candida auris sessile cells (median FICI was 0.088) but not against C. albicans biofilms (median FICI was 1). The oil showed potent efflux pump inhibitory properties in the case of Staphylococcus aureus and Escherichia coli. The therapeutic potential of Juniperus may be promising for future more extensive research and in vivo tests to develop new drugs against antibiotic and antifungal resistance.
Collapse
Affiliation(s)
- Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Utca 6, 6725 Szeged, Hungary;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary;
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Marianna Usai
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Mauro Marchetti
- Institute of Biomolecular Chemistry (CNR), Li Punti, 07100 Sassari, Italy;
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine and Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (R.K.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine and Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (R.K.)
| |
Collapse
|