1
|
Hua J, Zhao Y, Zhang Y, Zhu Y, Liu C, Wang F, Xu X, Yu Q. Environmental and Health Risk Assessment of Fugitive Dust from Magnesium Slag Yards. TOXICS 2025; 13:307. [PMID: 40278623 DOI: 10.3390/toxics13040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
During the natural cooling process of magnesium slag stockpiles in the open air, the phase transformation of gamma-dicalcium silicate (γ-C2S) induces a powdering phenomenon, resulting in the generation of a large amount of PM10 and PM2.5 dust. Based on the dust emission model of stockpiles and the Gaussian dispersion model, combined with the Monte Carlo simulation method, this study conducted a quantitative assessment of the environmental risk of heavy metals (Pb, Cd, Hg, As, Cr(VI)) in dust to the surrounding residential areas. The results show that the enrichment degree of heavy metals in PM2.5 is significantly higher than that in PM10. At a downwind distance of 1000 m, the exceedance multiples of Cr(VI), As, and Cd reach 131.5, 23.6, and 51.8 times, respectively. The total carcinogenic risk (9.2 × 10-7) and total non-carcinogenic hazard quotient (0.15) in the residential area are below the limits, but the contribution rates of As and Cd are relatively high. Sensitivity analysis further reveals that the moisture content of the stockpile, dust removal rate, and distance are the key control parameters affecting the environmental risk. Based on the research findings, it is recommended to increase sprinkling frequency, install windbreak nets, and promote magnesium slag utilization to effectively control dust risks.
Collapse
Affiliation(s)
- Jing Hua
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Yuanchao Zhao
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Yuanzheng Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Yining Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chang Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaowei Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Qi Yu
- Department of Environmental Science, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
2
|
Chen YH, Munoz A, Krause C, Brune J, Tsai CSJ. Assessment of Sub-micrometer-Sized Particles with Practical Activities in an Underground Coal Mine. MINING, METALLURGY & EXPLORATION 2024; 41:2801-2815. [PMID: 39717168 PMCID: PMC11663185 DOI: 10.1007/s42461-024-01140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024]
Abstract
This assessment was designed to explore and characterize the airborne particles, especially for the sub-micrometer sizes, in an underground coal mine. Airborne particles present in the breathing zone were evaluated by using both (1) direct reading real-time instruments (RTIs) to measure real-time particle number concentrations in the workplaces and (2) gravimetric samplers to collect airborne particles to obtain mass concentrations and conduct further characterizations. Airborne coal mine particles were collected via three samplers: inhalable particle sampler (37 mm cassette with polyvinyl chloride (PVC) filter), respirable dust cyclone (10 mm nylon cyclone with 37 mm Zefon cassette and PVC filter), and a Tsai diffusion sampler (TDS). The TDS, a newly designed sampler, is for collecting particles in the nanometer and respirable size range with a polycarbonate filter and grid. The morphology and compositions of collected particles on the filters were characterized using electron microscopy (EM). RTIs reading showed that the belt entry had a greatly nine-times higher total particle number concentration in average (~ 34,700 particles/cm3) than those measured at both the underground entry and office building (~ 4630 particles/cm3). The belt entry exhibited not only the highest total particle number concentration, but it also had different particle size fractions, particularly in the submicron and smaller sizes. A high level of submicron and nanoparticles was found in the belt conveyor drift area (with concentrations ranging from 0.54 to 1.55 mg/m3 among three samplers). The data support that small particles less than 300 nm are present in the underground coal mine associated with dust generated from practical mining activities. The chemical composition of the air particles has been detected in the presence of Ca, Cu, Si, Al, Fe, and Co which were all found to be harmful to miners when inhaled. Supplementary Information The online version contains supplementary material available at 10.1007/s42461-024-01140-w.
Collapse
Affiliation(s)
- Yi-Hsuan Chen
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA USA
| | - Alejandro Munoz
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA USA
| | - Connor Krause
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA USA
| | - Jürgen Brune
- Mining Engineering Department, Colorado School of Mines, Golden, CO USA
| | - Candace S. J. Tsai
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
3
|
Aboelezz A, Beltran M, Hargather MJ, Hassanalian M, Roghanchi P. Comprehensive design and performance validation of a wind tunnel for advanced respirable dust deposition investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135516. [PMID: 39181002 DOI: 10.1016/j.jhazmat.2024.135516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
This study presents the comprehensive design and performance validation of a wind tunnel specifically developed for advanced investigations into respirable dust deposition pertinent to coal mining environments. The design integrates a constant particle delivery system engineered to maintain uniform particle dispersion, which is critical for replicating real-world conditions in coal mines. Our methodology involved using ANSYS Fluent for the design and optimization of a blowing-type wind tunnel, with a focus on controlling turbulence levels and minimizing pressure drops, which are crucial for accurate dust behaviour simulation. The core of our research emphasizes the deployment of the Aerosol Lung Deposition Apparatus (ALDA) alongside a custom dust injection system to measure particle distributions within the test section. This setup enabled us to simulate the inhalation of coal dust particles, providing a realistic scenario for assessing potential hazards to miners. Validation of the tunnel's performance was achieved through extensive testing with dust sensors and a hot-wire anemometer, which verified the airflow velocity and turbulence against the initial design specifications. The findings affirm the wind tunnel's capability to effectively model dust deposition and its impacts, thereby offering opportunities for enhancing miner safety and health standards.
Collapse
Affiliation(s)
- Ahmed Aboelezz
- Department of Mechincal Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Maria Beltran
- Department of Mineral Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Michael J Hargather
- Department of Mechincal Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Mostafa Hassanalian
- Department of Mechincal Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA.
| | - Pedram Roghanchi
- Department of Mining Engineering, University of Kentucky, Lexington, KY 40506-0107, USA
| |
Collapse
|
4
|
Pham TTK, Le SH, Nguyen T, Balasubramanian R, Tran PTM. Characteristics of airborne particles in stone quarrying areas: Human exposure assessment and mitigation. ENVIRONMENTAL RESEARCH 2024; 245:118087. [PMID: 38159664 DOI: 10.1016/j.envres.2023.118087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
This investigation aims to assess the levels of human exposure to airborne particulate matter (PM) in various locations of a natural stone quarry for the first time based on simultaneous measurements of both PM mass and number concentrations (PMC and PNC). A quarry located in Danang city, Vietnam, considered to be a "hotspot" of air pollution in the city, was selected for detailed investigations. Both PMC and PNC were found to be significantly higher (1.2-6.0 times) within the quarry compared to surrounding areas. Mechanical activities during mining, notably crushing, screening, hauling, and loading stones, contributed to increased emissions of PM in the coarser mode (1-10 μm) compared to the accumulation mode (0.1-1 μm) and thus increased deposition of PM1-10 in the human upper respiratory tract. In contrast, combustion activities, especially the diesel engine exhaust from various machines and vehicles used in the quarry, resulted in increased emissions of small particles in the accumulation mode that dominated the PNC and in their deposition in the lower respiratory tract. Simultaneous measurements of PNC and PMC revealed that the PM counts were strongly associated with PM deposition in the alveolar region (accounting for ≈ 76% of total PNC of particles less than 10 μm, N10), while the PM mass concentration was a better indicator of the deposition of PM in the head airway region (≈92% of total PMC of PM10). Overall, this study demonstrates the significance of measuring both PNC and PMC to assess PM exposure levels, regional respiratory doses, and potential health effects associated with human exposure to PM generated from stone quarrying activities. The novelty of this work is the integration of real-time mass and number concentrations of PM over the size range from 20 nm to 10 μm to provide insights into respiratory deposited doses of size-fractionated PM among quarry workers.
Collapse
Affiliation(s)
- Thoa Thi Kim Pham
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang Str., Danang City, Viet Nam
| | - Son Hoang Le
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang Str., Danang City, Viet Nam
| | - Teron Nguyen
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang Str., Danang City, Viet Nam
| | | | - Phuong Thi Minh Tran
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang Str., Danang City, Viet Nam; College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
5
|
Miranda-Guevara A, Muñoz-Acevedo A, Fiorillo-Moreno O, Acosta-Hoyos A, Pacheco-Londoño L, Quintana-Sosa M, De Moya Y, Dias J, de Souza GS, Martinez-Lopez W, Garcia ALH, da Silva J, Borges MS, Henriques JAP, León-Mejía G. The dangerous link between coal dust exposure and DNA damage: unraveling the role of some of the chemical agents and oxidative stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7081-7097. [PMID: 37542205 PMCID: PMC10517898 DOI: 10.1007/s10653-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/15/2023] [Indexed: 08/06/2023]
Abstract
Exposure to coal mining dust poses a substantial health hazard to individuals due to the complex mixture of components released during the extraction process. This study aimed to assess the oxidative potential of residual coal mining dust on human lymphocyte DNA and telomeres and to perform a chemical characterization of coal dust and urine samples. The study included 150 individuals exposed to coal dust for over ten years, along with 120 control individuals. The results revealed significantly higher levels of DNA damage in the exposed group, as indicated by the standard comet assay, and oxidative damage, as determined by the FPG-modified comet assay. Moreover, the exposed individuals exhibited significantly shorter telomeres compared to the control group, and a significant correlation was found between telomere length and oxidative DNA damage. Using the PIXE method on urine samples, significantly higher concentrations of sodium (Na), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), iron (Fe), zinc (Zn), and bromine (Br) were observed in the exposed group compared to the control group. Furthermore, men showed shorter telomeres, greater DNA damage, and higher concentrations of nickel (Ni), calcium (Ca), and chromium (Cr) compared to exposed women. Additionally, the study characterized the particles released into the environment through GC-MS analysis, identifying several compounds, including polycyclic aromatic hydrocarbons (PAHs) such as fluoranthene, naphthalene, anthracene, 7H-benzo[c]fluorene, phenanthrene, pyrene, benz[a]anthracene, chrysene, and some alkyl derivatives. These findings underscore the significant health risks associated with exposure to coal mining dust, emphasizing the importance of further research and the implementation of regulatory measures to safeguard the health of individuals in affected populations.
Collapse
Affiliation(s)
- Alvaro Miranda-Guevara
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Amner Muñoz-Acevedo
- Grupo de Investigación en Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Ornella Fiorillo-Moreno
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
- Clínica Iberoamerica, Barranquilla, Colombia
- Clinica el Carmen, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Leonardo Pacheco-Londoño
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Milton Quintana-Sosa
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Yurina De Moya
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Johnny Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme Soares de Souza
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Wilner Martinez-Lopez
- Ministry of Education and Culture, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Juliana da Silva
- Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS, Brazil
- Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Malu Siqueira Borges
- Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia e em Ciências Médicas, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| | - Grethel León-Mejía
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia.
| |
Collapse
|
6
|
Zeng F, Jiang Z. Spatial and temporal evolution of mine dust research: visual knowledge mapping analysis in Web of Science from 2001 to 2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62170-62200. [PMID: 36940022 PMCID: PMC10025797 DOI: 10.1007/s11356-023-26332-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/03/2023] [Indexed: 05/10/2023]
Abstract
Dust pollution control is the basic guarantee of mine safety production, which has been widely concerned by scholars. Based on a total of 1786 publications collected by the Web of Science Core Collection (WOSCC) from 2001 to 2021, this paper analyzes the spatial-temporal distribution characteristics, hot topics, and frontier trends of the international mine dust field during the past 20 years by using Citespace and VOSviewer knowledge graph technology. The research shows that the study of mine dust can be divided into three stages: initial period (2001 ~ 2008), stable transition period (2009 ~ 2016), and boom period (2017 ~ 2021). The journals and disciplines which belong to mine dust research mainly focus on environmental science and engineering technology. A stable core group of authors and institutions have been preliminarily formed in the dust research field. The main themes of the study contained the whole process of mine dust generation, transport, prevention, and control, as well as the consequences of disaster. At present, the hot research fields mainly focus on mine dust particle pollution, multi-stage dust prevention, and emission reduction technologies, and mine occupational protection, monitoring, and early warning. In the future, the research should focus on the mechanism of dust production and transportation, the theory of efficient prevention and control, the technology and equipment of precise prevention and control of dust, and the high-precision monitoring and early warning of dust concentration. Future research should be concerned with dust control in underground mines and deep concave open-pit mines with complicated and treacherous environments, and strengthen research institutions, interdisciplinary cooperation, and interaction so as to promote the integration and application of mine dust and automation, information, and intelligent technology.
Collapse
Affiliation(s)
- Fabin Zeng
- School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhongan Jiang
- School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
7
|
Wang H, Ye Q, Chen Y, Li T. Epidemiology of coal miners' pneumoconiosis and its social determinants: An ecological study from 1949 to 2021 in China. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:46-55. [PMID: 39170871 PMCID: PMC11332845 DOI: 10.1016/j.pccm.2023.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Indexed: 08/23/2024]
Abstract
Background Pneumoconiosis is the most widely distributed occupational disease worldwide. China is currently the largest coal producer and consumer and the country with the most coal miners and cases of coal workers' pneumoconiosis (CWP). Despite more than 70 years of effort, the problem of CWP and silicosis remains serious. There is a lack of analysis of direct data on coal miners' pneumoconiosis from all over the country. This study aimed to describe the epidemiology of coal miners' pneumoconiosis and reveal some important clues regarding its social determinants. Methods The annual incidence rate, 20-year prevalence rate, and incidence rate of coal miners' pneumoconiosis per million tons in China from 1949 to 2021 were calculated by using the data of annual number of coal miners' pneumoconiosis diagnosed and reported from the coal mining and dressing industry, the number of coal miners, and the raw coal production, and the relationship between the incident cases of coal miners' pneumoconiosis and the death toll from coal mine safety accidents was analyzed using Pearson correlation analysis, with the aim of exploring the relationship between the incident cases of coal miners' pneumoconiosis and its social determinants with an ecological study. Results From 1949 to 2021, there have been more than 462,000 patients with coal miners' pneumoconiosis in China, showing double U-shaped distributions with an increasing trend, accounting for about 50.5% (462,000/915,000) of all diagnosed pneumoconiosis in China, while the incidencet rate of coal miners' pneumoconiosis presents a large W shaped distribution with three peaks over a time span of more than 50 years. From 1949 to 1986, there was a strong correlation between the incident cases of coal miners' pneumoconiosis and raw coal production, the number of coal miners, and the number of deaths from coal mine accidents (r = 0.849, P < 0.001; r = 0.817, P < 0.001; r = 0.697, P < 0.001, respectively), but there was no such correlation found from 1987 to 2006. It was estimated that the annual incidence rate of coal miners' pneumoconiosis in China from 2016 to 2020 was 3.4‰ (95% CI: 2.6-4.3‰), and the prevalence rate across the recent 20-year observation period was 4.8% (95% CI: 4.6-4.9%), both measured at the peak or around the peak over the 70 years. In particular, 1963, 1986, 2006, and 2009 were the four important turning points in time. Conclusion There was a sustained high level of incident cases of coal miners' pneumoconiosis with double U-shaped curve in China, which may be affected by a variety of social determinants and risk factors.
Collapse
Affiliation(s)
- Huanqiang Wang
- Department of Occupational Respiratory Diseases, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing 100020, China
| | - Yun Chen
- Department of Occupational Respiratory Diseases, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Tao Li
- Department of Occupational Respiratory Diseases, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
8
|
Rahimi E, Shekarian Y, Shekarian N, Roghanchi P. Investigation of respirable coal mine dust (RCMD) and respirable crystalline silica (RCS) in the U.S. underground and surface coal mines. Sci Rep 2023; 13:1767. [PMID: 36720966 PMCID: PMC9889769 DOI: 10.1038/s41598-022-24745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023] Open
Abstract
Dust is an inherent byproduct of mining activities that raises notable health and safety concerns. Cumulative inhalation of respirable coal mine dust (RCMD) and respirable crystalline silica (RCS) can lead to obstructive lung diseases. Despite considerable efforts to reduce dust exposure by decreasing the permissible exposure limits (PEL) and improving the monitoring techniques, the rate of mine workers with respiratory diseases is still high. The root causes of the high prevalence of respiratory diseases remain unknown. This study aimed to investigate contributing factors in RCMD and RCS dust concentrations in both surface and underground mines. To this end, a data management approach is performed on MSHA's database between 1989 and 2018 using SQL data management. In this process, all data were grouped by mine ID, and then, categories of interests were defined to conduct statistical analysis using the generalized estimating equation (GEE) model. The total number of 12,537 and 9050 observations for respirable dust concentration are included, respectively, in the U.S. underground and surface mines. Several variables were defined in four categories of interest including mine type, geographic location, mine size, and coal seam height. Hypotheses were developed for each category based on the research model and were tested using multiple linear regression analysis. The results of the analysis indicate higher RCMD concentration in underground compared to RCS concentration which is found to be relatively higher in surface coal mines. In addition, RCMD concentration is seen to be higher in the Interior region while RCS is higher in the Appalachia region. Moreover, mines of small sizes show lower RCMD and higher RCS concentrations. Finally, thin-seam coal has greater RCMD and RCS concentrations compared to thicker seams in both underground and surface mines. In the end, it is demonstrated that RCMD and RCS concentrations in both surface and underground mines have decreased. Therefore, further research is needed to investigate the efficacy of the current mass-concentration-based monitoring system.
Collapse
Affiliation(s)
- Elham Rahimi
- Department of Mineral Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA
- John and Willie Leone Family Department of Energy and Mineral Engineering, Earth and Mineral Sciences (EMS) Energy Institute, The Pennsylvania State University, University Park, PA, USA
| | - Younes Shekarian
- Department of Mineral Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA
- John and Willie Leone Family Department of Energy and Mineral Engineering, Earth and Mineral Sciences (EMS) Energy Institute, The Pennsylvania State University, University Park, PA, USA
| | - Naser Shekarian
- Department of Information System, Business School, University of Colorado Denver, Denver, CO, USA
| | - Pedram Roghanchi
- Department of Mineral Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA.
| |
Collapse
|
9
|
Rumchev K, Van Hoang D, Lee AH. Exposure to dust and respiratory health among Australian miners. Int Arch Occup Environ Health 2023; 96:355-363. [PMID: 36089622 PMCID: PMC9968258 DOI: 10.1007/s00420-022-01922-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Occupational exposure to dust has been recognised as a significant health hazard to mine workers. This study aimed to investigate the association between exposure to inhalable (INH) and respirable (RES) dust and respiratory health among mine workers in Western Australia using an industry-wide exposure database. METHODS The database comprised cross-sectional surveys conducted by mining companies for the period 2001-2012. The study population consisted of 12,797 workers who were monitored for exposure to INH and RES dust and undertook health assessments including a respiratory questionnaire and spirometry test. RESULTS Despite the general trend of declining exposure to both INH and RES dust observed over the 12 years period, mine workers reported a higher prevalence of phlegm and cough when exposed to elevated concentrations of INH and RES dust. Logistic regression analysis further confirmed the positive association between INH dust exposure and the prevalence of phlegm with an adjusted odds ratio of 1.033 (95% CI 1.012-1.052). Overall, 6.3% of miners might have potential airway obstruction, and exposure to INH dust was associated with impaired lung function parameters. CONCLUSION Exposure levels of INH and RES dust particles among mine workers have reduced considerably and were well below currently legislated occupational exposure limits. However, given the reported higher prevalence of phlegm and cough among those with elevated dust concentrations, there is a continued need for effective dust exposure monitoring and control in the mineral mining industry.
Collapse
Affiliation(s)
- Krassi Rumchev
- School of Public Health, Curtin University, Perth, Australia.
| | - Dong Van Hoang
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Andy H. Lee
- School of Public Health, Curtin University, Perth, Australia
| |
Collapse
|
10
|
Jing D, Liu H, Zhang T, Ge S, Jiang Z, Zhang Q. Study on dust control technology of mobile spray combined with full-section fog curtain in return airway of header working face. PLoS One 2022; 17:e0277710. [PMID: 36395122 PMCID: PMC9671302 DOI: 10.1371/journal.pone.0277710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
For the problem of coal dust pollution in the return air lane of the comprehensive mining working face of soft rock mines.Based on the principle of supersonic siphon pneumatic atomization dust control, mobile vehicle-mounted pneumatic spraying combined with full-section fog curtain dust control technology is proposed to address the coal dust pollution problem in the return air tunnel of the comprehensive mining working face of soft rock mines. This technology has a wider spraying range, stronger wind resistance and lower energy consumption.Using the k-ε turbulence module and the fluid flow particle tracking module of COMSOL simulation software, a three-dimensional numerical model of the return air tunnel was established. The effect of wind flow characteristics on the diffusion range of coal dust and fog droplets was analysed, and the dust transport pattern and dust control effect of the new technology were obtained for different cross-sectional return airways. The results show that the velocity of the wind flow is continuously decayed by the slope, and the dust of different particle sizes is distributed differently by the inertial force. Coal dust with particle sizes larger than 6.5 μm accumulates below the structure at a lower velocity, and coal dust with particle sizes smaller than 4.5 μm is mostly suspended above the structure at a higher velocity. The device effectively stops the transport of dust and covers the whole section of the roadway, and the dust removal efficiency reaches 96.53%~97.93%, which provides relevant theoretical support and treatment means for the control of dust pollution in the return airway of coal mines.
Collapse
Affiliation(s)
- Deji Jing
- College of Safety Science and Engineering, Liaoning Technical University, Fuxin, China
- Research Institute of Safety Science and Engineering, Liaoning Technical University, Fuxin, China
- Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Fuxin, China
| | - Hongwei Liu
- College of Safety Science and Engineering, Liaoning Technical University, Fuxin, China
- Research Institute of Safety Science and Engineering, Liaoning Technical University, Fuxin, China
- Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Fuxin, China
| | - Tian Zhang
- College of Safety Science and Engineering, Liaoning Technical University, Fuxin, China
- Research Institute of Safety Science and Engineering, Liaoning Technical University, Fuxin, China
- Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Fuxin, China
- * E-mail:
| | - Shaocheng Ge
- Safety and Emergency Management Engineering College, Taiyuan University of Technology, Taiyuan, China
| | - Zhuo Jiang
- College of Safety Science and Engineering, Liaoning Technical University, Fuxin, China
- Research Institute of Safety Science and Engineering, Liaoning Technical University, Fuxin, China
- Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Fuxin, China
| | - Qiang Zhang
- Liaoning Tiefa Energy Co., Ltd, Tieling, China
| |
Collapse
|
11
|
Vanka KS, Shukla S, Gomez HM, James C, Palanisami T, Williams K, Chambers DC, Britton WJ, Ilic D, Hansbro PM, Horvat JC. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev 2022; 31:31/165/210250. [PMID: 35831008 DOI: 10.1183/16000617.0250-2021] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/20/2022] [Indexed: 01/15/2023] Open
Abstract
Workers in the mining and construction industries are at increased risk of respiratory and other diseases as a result of being exposed to harmful levels of airborne particulate matter (PM) for extended periods of time. While clear links have been established between PM exposure and the development of occupational lung disease, the mechanisms are still poorly understood. A greater understanding of how exposures to different levels and types of PM encountered in mining and construction workplaces affect pathophysiological processes in the airways and lungs and result in different forms of occupational lung disease is urgently required. Such information is needed to inform safe exposure limits and monitoring guidelines for different types of PM and development of biomarkers for earlier disease diagnosis. Suspended particles with a 50% cut-off aerodynamic diameter of 10 µm and 2.5 µm are considered biologically active owing to their ability to bypass the upper respiratory tract's defences and penetrate deep into the lung parenchyma, where they induce potentially irreversible damage, impair lung function and reduce the quality of life. Here we review the current understanding of occupational respiratory diseases, including coal worker pneumoconiosis and silicosis, and how PM exposure may affect pathophysiological responses in the airways and lungs. We also highlight the use of experimental models for better understanding these mechanisms of pathogenesis. We outline the urgency for revised dust control strategies, and the need for evidence-based identification of safe level exposures using clinical and experimental studies to better protect workers' health.
Collapse
Affiliation(s)
- Kanth Swaroop Vanka
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Division of Pulmonary, Allergy, and Critical Care Medicine, Dept of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shakti Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Carole James
- School of Health Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CERSE), The University of Newcastle, Newcastle, NSW, Australia
| | - Kenneth Williams
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Daniel C Chambers
- School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant Program, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Dept of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Dusan Ilic
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Michael Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| | - Jay Christopher Horvat
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia .,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| |
Collapse
|
12
|
Characterization and Toxicity Analysis of Lab-Created Respirable Coal Mine Dust from the Appalachians and Rocky Mountains Regions. MINERALS 2022. [DOI: 10.3390/min12070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coal mine workers are continuously exposed to respirable coal mine dust (RCMD) in workplaces, causing severe lung diseases. RCMD characteristics and their relations with dust toxicity need further research to understand the adverse exposure effects to RCMD. The geographic clustering of coal workers’ pneumoconiosis (CWP) suggests that RCMD in the Appalachian region may exhibit more toxicity than other geographic regions such as the Rocky Mountains. This study investigates the RCMD characteristics and toxicity based on geographic location. Dissolution experiments in simulated lung fluids (SLFs) and in vitro responses were conducted to determine the toxicity level of samples collected from five mines in the Rocky Mountains and Appalachian regions. Dust characteristics were investigated using Fourier-transform infrared spectroscopy, scanning electron microscopy, the BET method, total microwave digestion, X-ray diffraction, and X-ray photoelectron spectroscopy. Inductively coupled plasma mass spectrometry was conducted to determine the concentration of metals dissolved in the SLFs. Finer particle sizes and higher mineral and elemental contents were found in samples from the Appalachian regions. Si, Al, Fe, Cu, Sr, and Pb were found in dissolution experiments, but no trends were found indicating higher dissolutions in the Appalachian region. In vitro studies indicated a proinflammatory response in epithelial and macrophage cells, suggesting their possible participation in pneumoconiosis and lung diseases development.
Collapse
|
13
|
Tirado-Ballestas IP, Alvarez-Ortega N, Maldonado-Rojas W, Olivero-Verbel J, Caballero-Gallardo K. Oxidative stress and alterations in the expression of genes related to inflammation, DNA damage, and metal exposure in lung cells exposed to a hydroethanolic coal dust extract. Mol Biol Rep 2022; 49:4861-4871. [PMID: 35334019 DOI: 10.1007/s11033-022-07341-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Open cast mining is well known as a concerning source of environmental and public health problems. This work aimed to obtain a hydroethanolic coal dust extract (≤ 38 µm) and to characterize its composition with particular regard to content of organic compounds by GC/MS, as well as describe its toxicity in vitro on Calu-1 after exposure to several concentrations (0-500 μg/mL). MATERIALS AND RESULTS Cytotoxicity was measured with MTT assay and DCFH-DA probe was employed to estimate the amount of reactive oxygen species (ROS) in Calu-1 cells. RT-PCR was employed to quantify relative expression of genes associated with inflammation, oxidative stress, as well as metals, and lipid metabolism. Seventeen organic compounds were identified in the extract, highlighting undecane, dodecane, pentadecane and benzo[a]anthracene, 6,12-dimethyl-1,2,3,4-tetrahydro-. Cytotoxicity test showed a decrease trend in the cell viability after 24 h hours from the concentration of 62.5 µg/mL. Further, the extract raised intracellular ROS when compared with control. Expression levels of CYP1A1, IL-8, IL-6, MT1X, and NQO1 were up-regulated when cells were exposed to 125 µg/mL of coal dust, whereas PPAR-α was down-regulated, likely involving aryl hydrocarbon receptor regulation. CONCLUSIONS In short, this study shows that despite hydroethanolic coal dust extract is not cytotoxic to Calu-1 cells, it produces an elevation of intracellular ROS and alters the expression in marker genes of oxidative stress, inflammation, metal transport, xenobiotic and lipid metabolism. These findings suggest that chemicals present in coal dust are biologically active and may interfere key biochemical process in the living organisms.
Collapse
Affiliation(s)
- I P Tirado-Ballestas
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia.,Functional Toxicology Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia
| | - N Alvarez-Ortega
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia.,Functional Toxicology Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia
| | - W Maldonado-Rojas
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia
| | - J Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia
| | - K Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia. .,Functional Toxicology Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, 130014, Cartagena, Colombia.
| |
Collapse
|