1
|
Ter Brake FHG, van Luttikhuizen SAFM, van der Wel T, Gagestein B, Florea BI, van der Stelt M, Janssen APA. Previously Published Phosphatase Probes have Limited Utility Due to their Unspecific Reactivity. Chembiochem 2024; 25:e202400333. [PMID: 39229773 DOI: 10.1002/cbic.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
This study explores the use of activity-based protein profiling to study protein tyrosine phosphatases. With the discovery of allosteric SHP2 inhibitors, this enzyme family has resurfaced as interesting drug targets. Therefore, we envisioned that previously described direct electrophiles and quinone methide-based traps targeting phosphatases could be applied in competitive activity-based protein profiling assays. This study evaluates three direct electrophiles, specifically, a vinyl sulfonate, a vinyl sulfone, and an α-bromobenzylphosphonate as well as three quinone methide-based traps as activity-based probes. For all these moieties it was previously shown that they could selectively engage in assays with purified or overexpressed phosphatases in bacterial lysates. However, this study demonstrates that probes based on these moieties all suffer from unspecific labelling. Direct electrophiles were either unspecific or not activity-based, while quinone methide-based traps showed dependence on phosphatase activity but also resulted in unspecific labelling due to diffusion after activation. This phenomenon, termed 'bystander' labelling, occurred even with catalytically inactive SHP2 mutants. We concluded that alternative strategies or chemistries are needed to apply activity-based protein profiling in phosphatase research. Moreover, this study shows that quinone methide-based designs have limited potential in probe and inhibitor development strategies due to their intrinsic reactivity.
Collapse
Affiliation(s)
- F H G Ter Brake
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - S A F M van Luttikhuizen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - T van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - B Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - B I Florea
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - M van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| | - A P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Einsteinweg 55, Leiden, 2333 CC, The, Netherlands
| |
Collapse
|
2
|
Dechow SJ, Abramovitch RB. Targeting Mycobacterium tuberculosis pH-driven adaptation. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001458. [PMID: 38717801 PMCID: PMC11165653 DOI: 10.1099/mic.0.001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.
Collapse
Affiliation(s)
- Shelby J. Dechow
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert B. Abramovitch
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Xiao W, Chen Y, Zhang J, Guo Z, Hu Y, Yang F, Wang C. A Simplified and Ultrafast Pipeline for Site-Specific Quantitative Chemical Proteomics. J Proteome Res 2023; 22:3360-3367. [PMID: 37676756 DOI: 10.1021/acs.jproteome.3c00179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Activity-based proteome profiling (ABPP) is a powerful chemoproteomic technology for global profiling of protein activity and modifications. The tandem orthogonal proteolysis-ABPP (TOP-ABPP) strategy utilizes a clickable enrichment tag with cleavable linkers to enable direct identification of probe-labeled residue sites within the target proteins. However, such a site-specific chemoproteomic workflow requires a long operation time and complex sample preparation procedures, limiting its wide applications. In the current study, we developed a simplified and ultrafast peptide enrichment and release TOP-ABPP ("superTOP-ABPP") pipeline for site-specific quantitative chemoproteomic analysis with special agarose resins that are functionalized with azide groups and acid-cleavable linkers. The azide groups allow enrichment of peptides that are labeled by the alkynyl probe through a one-step click reaction, which can be conveniently released by acid cleavage for subsequent LC-MS/MS analysis. In comparison with the traditional TOP-ABPP method, superTOP-ABPP cuts down the averaged sample preparation time from 25 to 9 h, and significantly improves the sensitivity and coverage of site-specific cysteinome profiling. The method can also be seamlessly integrated with reductive dimethylation to enable quantitative chemoproteomic analysis with a high accuracy. The simplified and ultrafast superTOP-ABPP will become a valuable tool for site-specific quantitative chemoproteomic studies.
Collapse
Affiliation(s)
- Weidi Xiao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ying Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jin Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yihao Hu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Minkoff BB, Burch HL, Wolfer JD, Sussman MR. Radical-Mediated Covalent Azidylation of Hydrophobic Microdomains in Water-Soluble Proteins. ACS Chem Biol 2023; 18:1786-1796. [PMID: 37463134 DOI: 10.1021/acschembio.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Hydrophobic microdomains, also known as hydrophobic patches, are essential for many important biological functions of water-soluble proteins. These include ligand or substrate binding, protein-protein interactions, proper folding after translation, and aggregation during denaturation. Unlike transmembrane domains, which are easily recognized from stretches of contiguous hydrophobic sidechains in amino acids via primary protein sequence, these three-dimensional hydrophobic patches cannot be easily predicted. The lack of experimental strategies for directly determining their locations hinders further understanding of their structure and function. Here, we posit that the small triatomic anion N3- (azide) is attracted to these patches and, in the presence of an oxidant, forms a radical that covalently modifies C-H bonds of nearby amino acids. Using two model proteins (BSA and lysozyme) and a cell-free lysate from the model higher plant Arabidopsis thaliana, we find that radical-mediated covalent azidylation occurs within buried catalytic active sites and ligand binding sites and exhibits similar behavior to established hydrophobic probes. The results herein suggest a model in which the azido radical is acting as an "affinity reagent" for nonaqueous three-dimensional protein microenvironments and is consistent with both the nonlocalized electron density of the azide moiety and the known high reactivity of azido radicals widely used in organic chemistry syntheses. We propose that the azido radical is a facile means of identifying hydrophobic microenvironments in soluble proteins and, in addition, provides a simple new method for attaching chemical handles to proteins without the need for genetic manipulation or specialized reagents.
Collapse
Affiliation(s)
- Benjamin B Minkoff
- Center for Genomic Science Innovation, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Heather L Burch
- Center for Genomic Science Innovation, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jamison D Wolfer
- Center for Genomic Science Innovation, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Michael R Sussman
- Center for Genomic Science Innovation, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Ahmad MG, Balamurali MM, Chanda K. Click-derived multifunctional metal complexes for diverse applications. Chem Soc Rev 2023; 52:5051-5087. [PMID: 37431583 DOI: 10.1039/d3cs00343d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Click reaction that involves Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) serves as the most potent and highly dependable tool for the development of many complex architectures. It has paved the way for the synthesis of numerous drug molecules with enhanced synthetic flexibility, reliability, specificity and modularity. It is all about bringing two different molecular entities together to achieve the required molecular properties. The utilization of Click chemistry has been well demonstrated in organic synthesis, particularly in reactions that involve biocompatible precursors. In pharmaceutical research, Click chemistry is extensively utilized for drug delivery applications. The exhibited bio-compatibility and dormancy towards other biological components under cellular environments makes Click chemistry an identified boon in bio-medical research. In this review, various click-derived transition metal complexes are discussed in terms of their applications and uniqueness. The scope of this chemistry towards other streams of applied sciences is also discussed.
Collapse
Affiliation(s)
- Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai 600127, Tamilnadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
6
|
Yang SQ, Zhang LX, Ge YJ, Zhang JW, Hu JX, Shen CY, Lu AP, Hou TJ, Cao DS. In-silico target prediction by ensemble chemogenomic model based on multi-scale information of chemical structures and protein sequences. J Cheminform 2023; 15:48. [PMID: 37088813 PMCID: PMC10123967 DOI: 10.1186/s13321-023-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023] Open
Abstract
Identification and validation of bioactive small-molecule targets is a significant challenge in drug discovery. In recent years, various in-silico approaches have been proposed to expedite time- and resource-consuming experiments for target detection. Herein, we developed several chemogenomic models for target prediction based on multi-scale information of chemical structures and protein sequences. By combining the information of a compound with multiple protein targets together and putting these compound-target pairs into a well-established model, the scores to indicate whether there are interactions between compounds and targets can be derived, and thus a target prediction task can be completed by sorting the outputted scores. To improve the prediction performance, we constructed several chemogenomic models using multi-scale information of chemical structures and protein sequences, and the ensemble model with the best performance was used as our final model. The model was validated by various strategies and external datasets and the promising target prediction capability of the model, i.e., the fraction of known targets identified in the top-k (1 to 10) list of the potential target candidates suggested by the model, was confirmed. Compared with multiple state-of-art target prediction methods, our model showed equivalent or better predictive ability in terms of the top-k predictions. It is expected that our method can be utilized as a powerful computational tool to narrow down the potential targets for experimental testing.
Collapse
Affiliation(s)
- Su-Qing Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liu-Xia Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - You-Jin Ge
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jin-Wei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jian-Xin Hu
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Cheng-Ying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Ting-Jun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
7
|
Kowalski K. A brief survey on the application of metal-catalyzed azide–alkyne cycloaddition reactions to the synthesis of ferrocenyl-x-1,2,3-triazolyl-R (x = none or a linker and R = organic entity) compounds with anticancer activity. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Torres-García D, van de Plassche MAT, van Boven E, van Leeuwen T, Groenewold MGJ, Sarris AJC, Klein L, Overkleeft HS, van Kasteren SI. Methyltetrazine as a small live-cell compatible bioorthogonal handle for imaging enzyme activities in situ. RSC Chem Biol 2022; 3:1325-1330. [PMID: 36349224 PMCID: PMC9627743 DOI: 10.1039/d2cb00120a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2024] Open
Abstract
Bioorthogonal chemistry combines well with activity-based protein profiling, as it allows for the introduction of detection tags without significantly influencing the physiochemical and biological functions of the probe. In this work, we introduced methyltetrazinylalanine (MeTz-Ala), a close mimic of phenylalanine, into a dipeptide fluoromethylketone cysteine protease inhibitor. Following covalent and irreversible inhibition, the tetrazine allows vizualisation of the captured cathepsin activity by means of inverse electron demand Diels Alder ligation in cell lysates and live cells, demonstrating that tetrazines can be used as live cell compatible, minimal bioorthogonal tags in activity-based protein profiling.
Collapse
Affiliation(s)
- Diana Torres-García
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Merel A T van de Plassche
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Emma van Boven
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Mirjam G J Groenewold
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Alexi J C Sarris
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Luuk Klein
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
9
|
Yan T, Palmer AB, Geiszler DJ, Polasky DA, Boatner LM, Burton NR, Armenta E, Nesvizhskii AI, Backus KM. Enhancing Cysteine Chemoproteomic Coverage through Systematic Assessment of Click Chemistry Product Fragmentation. Anal Chem 2022; 94:3800-3810. [PMID: 35195394 PMCID: PMC11832189 DOI: 10.1021/acs.analchem.1c04402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry-based chemoproteomics has enabled functional analysis and small molecule screening at thousands of cysteine residues in parallel. Widely adopted chemoproteomic sample preparation workflows rely on the use of pan cysteine-reactive probes such as iodoacetamide alkyne combined with biotinylation via copper-catalyzed azide-alkyne cycloaddition (CuAAC) or "click chemistry" for cysteine capture. Despite considerable advances in both sample preparation and analytical platforms, current techniques only sample a small fraction of all cysteines encoded in the human proteome. Extending the recently introduced labile mode of the MSFragger search engine, here we report an in-depth analysis of cysteine biotinylation via click chemistry (CBCC) reagent gas-phase fragmentation during MS/MS analysis. We find that CBCC conjugates produce both known and novel diagnostic fragments and peptide remainder ions. Among these species, we identified a candidate signature ion for CBCC peptides, the cyclic oxonium-biotin fragment ion that is generated upon fragmentation of the N(triazole)-C(alkyl) bond. Guided by our empirical comparison of fragmentation patterns of six CBCC reagent combinations, we achieved enhanced coverage of cysteine-labeled peptides. Implementation of labile searches afforded unique PSMs and provides a roadmap for the utility of such searches in enhancing chemoproteomic peptide coverage.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Andrew B Palmer
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Nikolas R Burton
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ernest Armenta
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Curry AM, Cohen I, Zheng S, Wohlfahrt J, White DS, Donu D, Cen Y. Profiling sirtuin activity using Copper-free click chemistry. Bioorg Chem 2021; 117:105413. [PMID: 34655842 DOI: 10.1016/j.bioorg.2021.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
The mammalian sirtuins are a group of posttranslational modification enzymes that remove acyl modifications from lysine residues in an NAD+-dependent manner. Although initially proposed as histone deacetylases (HDACs), they are now known to target other cellular enzymes and proteins as well. Sirtuin-catalyzed simple amide hydrolysis has profound biological consequences including suppression of gene expression, promotion of DNA damage repair, and regulation of glucose and lipid metabolism. Human sirtuins have been intensively pursued by both academia and industry as potential therapeutic targets for the treatment of diseases such as cancer and neurodegeneration. To gain a better understanding of their roles in various cellular events, innovative chemical probes are highly sought after. This current study focuses on the development of activity-based chemical probes (ABPs) for the profiling of sirtuin activity in biological samples. Cyclooctyne-containing and azido-containing probes were synthesized to enable the subsequent copper-free "click" conjugation to either a fluorophore or biotin. The two groups of structurally related ABPs demonstrated different labeling efficiency and selectivity: the cyclooctyne-containing probes failed to label recombinant sirtuins to any appreciable level, while the azido-containing ABPs showed good isoform selectivity. The azido-containing ABPs were further analyzed for their ability to label an individual sirtuin isoform in protein mixtures and cell lysates. These biocompatible ABPs allow the study of dynamic cellular protein activity change to become possible.
Collapse
Affiliation(s)
- Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Ian Cohen
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, United States
| | - Song Zheng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, United States
| | - Jessica Wohlfahrt
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, United States
| | - Dawanna S White
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| |
Collapse
|
11
|
Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat Biotechnol 2021; 39:630-641. [PMID: 33398154 PMCID: PMC8316984 DOI: 10.1038/s41587-020-00778-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS)G12C and Bruton's tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.
Collapse
|
12
|
Electrophilic Natural Products as Drug Discovery Tools. Trends Pharmacol Sci 2021; 42:434-447. [PMID: 33902949 DOI: 10.1016/j.tips.2021.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022]
Abstract
Electrophilic natural products (ENPs) are a rich source of bioactive molecules with tremendous therapeutic potential. While their synthetic complexity may hinder their direct use as therapeutics, they represent tools for elucidation of suitable molecular targets and serve as inspiration for the design of simplified synthetic counterparts. Here, we review the recent use of various activity-based protein profiling methods to uncover molecular targets of ENPs. Beyond target identification, these examples also showcase further development of synthetic ligands from natural product starting points. Two examples demonstrate how ENPs can progress the emerging fields of targeted protein degradation and molecular glues. Though challenges still remain in the synthesis of ENP-based probes, and in their synthetic simplification, their potential for discovery of novel mechanisms of action makes it well worth the effort.
Collapse
|
13
|
Yan T, Desai HS, Boatner LM, Yen SL, Cao J, Palafox MF, Jami-Alahmadi Y, Backus KM. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*. Chembiochem 2021; 22:1841-1851. [PMID: 33442901 DOI: 10.1002/cbic.202000870] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Chemoproteomics has enabled the rapid and proteome-wide discovery of functional, redox-sensitive, and ligandable cysteine residues. Despite widespread adoption and considerable advances in both sample-preparation workflows and MS instrumentation, chemoproteomics experiments still typically only identify a small fraction of all cysteines encoded by the human genome. Here, we develop an optimized sample-preparation workflow that combines enhanced peptide labeling with single-pot, solid-phase-enhanced sample-preparation (SP3) to improve the recovery of biotinylated peptides, even from small sample sizes. By combining this improved workflow with on-line high-field asymmetric waveform ion mobility spectrometry (FAIMS) separation of labeled peptides, we achieve unprecedented coverage of >14000 unique cysteines in a single-shot 70 min experiment. Showcasing the wide utility of the SP3-FAIMS chemoproteomic method, we find that it is also compatible with competitive small-molecule screening by isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP). In aggregate, our analysis of 18 samples from seven cell lines identified 34225 unique cysteines using only ∼28 h of instrument time. The comprehensive spectral library and improved coverage provided by the SP3-FAIMS chemoproteomics method will provide the technical foundation for future studies aimed at deciphering the functions and druggability of the human cysteineome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Lisa M Boatner
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Stephanie L Yen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Jian Cao
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Maria F Palafox
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Keriann M Backus
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.,DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Cao J, Boatner LM, Desai HS, Burton NR, Armenta E, Chan NJ, Castellón JO, Backus KM. Multiplexed CuAAC Suzuki–Miyaura Labeling for Tandem Activity-Based Chemoproteomic Profiling. Anal Chem 2021; 93:2610-2618. [DOI: 10.1021/acs.analchem.0c04726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jian Cao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Heta S. Desai
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
| | - Nikolas R. Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ernest Armenta
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Neil J. Chan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - José O. Castellón
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Verhelst SHL, Bonger KM, Willems LI. Bioorthogonal Reactions in Activity-Based Protein Profiling. Molecules 2020; 25:E5994. [PMID: 33352858 PMCID: PMC7765892 DOI: 10.3390/molecules25245994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a powerful technique to label and detect active enzyme species within cell lysates, cells, or whole animals. In the last two decades, a wide variety of applications and experimental read-out techniques have been pursued in order to increase our understanding of physiological and pathological processes, to identify novel drug targets, to evaluate selectivity of drugs, and to image probe targets in cells. Bioorthogonal chemistry has substantially contributed to the field of ABPP, as it allows the introduction of tags, which may be bulky or have unfavorable physicochemical properties, at a late stage in the experiment. In this review, we give an overview of the bioorthogonal reactions that have been implemented in ABPP, provide examples of applications of bioorthogonal chemistry in ABPP, and share some thoughts on future directions.
Collapse
Affiliation(s)
- Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Herestr. 49, Box 802, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Kimberly M. Bonger
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
16
|
Hall DR, Yeung K, Peng H. Monohaloacetic Acids and Monohaloacetamides Attack Distinct Cellular Proteome Thiols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15191-15201. [PMID: 33170008 DOI: 10.1021/acs.est.0c03144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Disinfection byproduct (DBP) exposure has been linked to multiple adverse health outcomes. However, the molecular initiating events by which DBPs induce their toxicities remain unclear. Herein, we combined reporter cell lines and activity-based protein profiling (ABPP) chemical proteomics to identify the protein targets of three monohaloacetic acids (mHAAs) and three monohaloacetamides (mHAMs), at the proteome-wide level. While mHAAs and mHAMs have similar potencies in reducing MTT activity, mHAMs induced greater Nrf2-mediated oxidative stress responses, demonstrating their distinct toxicity pathways. ABPP on crude cell lysates suggested that general proteome thiol reactivity correlates with cytotoxicity. Interestingly, live cell ABPP results revealed class-specific proteins attacked by mHAMs or mHAAs. Subsequent proteomic analysis identified >100 unique targets per DBP. mHAMs preferentially react with redox proteins including disulfide oxidoreductase enzymes, accounting for their stronger Nrf2 responses. To further probe alkylation mechanisms, we directly monitored protein adducts and identified 120 and 37 unique peptides with iodoacetamide and iodoacetic acid adducts, respectively. Of the latter, we confirmed glyceraldehyde-3-phosphate dehydrogenase as a key target of IAA, specifically attacking the catalytic Cys 152. This is the first study reporting the distinct cellular protein targets of mHAAs and mHAMs at the proteome-wide level, which highlights their different toxicity pathways despite their similar structures.
Collapse
Affiliation(s)
- David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Kirsten Yeung
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S3H6, Canada
| |
Collapse
|
17
|
Bian Y, Jun JJ, Cuyler J, Xie XQ. Covalent allosteric modulation: An emerging strategy for GPCRs drug discovery. Eur J Med Chem 2020; 206:112690. [PMID: 32818870 PMCID: PMC9948676 DOI: 10.1016/j.ejmech.2020.112690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
Designing covalent allosteric modulators brings new opportunities to the field of drug discovery towards G-protein-coupled receptors (GPCRs). Targeting an allosteric binding pocket can allow a modulator to have protein subtype selectivity and low drug resistance. Utilizing covalent warheads further enables the modulator to increase the binding potency and extend the duration of action. This review starts with GPCR allosteric modulation to discuss the structural biology of allosteric binding pockets, the different types of allosteric modulators, as well as the advantages of employing allosteric modulation. This is followed by a discussion on covalent modulators to clarify how covalent ligands can benefit the receptor modulation and to illustrate moieties that can commonly be used as covalent warheads. Finally, case studies are presented on designing class A, B, and C GPCR covalent allosteric modulators to demonstrate successful stories on combining allosteric modulation and covalent binding. Limitations and future perspectives are also covered.
Collapse
Affiliation(s)
- Yuemin Bian
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy,NIH National Center of Excellence for Computational Drug Abuse Research
| | - Jaden Jungho Jun
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy,NIH National Center of Excellence for Computational Drug Abuse Research
| | - Jacob Cuyler
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy,NIH National Center of Excellence for Computational Drug Abuse Research
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, Pittsburgh, PA, 15261, United States; NIH National Center of Excellence for Computational Drug Abuse Research, Pittsburgh, PA, 15261, United States; Drug Discovery Institute, Pittsburgh, PA, 15261, United States; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States.
| |
Collapse
|
18
|
Wei H, Guan YD, Zhang LX, Liu S, Lu AP, Cheng Y, Cao DS. A combinatorial target screening strategy for deorphaning macromolecular targets of natural product. Eur J Med Chem 2020; 204:112644. [PMID: 32738412 DOI: 10.1016/j.ejmech.2020.112644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Natural products, as an ideal starting point for molecular design, play a pivotal role in drug discovery; however, ambiguous targets and mechanisms have limited their in-depth research and applications in a global dimension. In-silico target prediction methods have become an alternative to target identification experiments due to the high accuracy and speed, but most studies only use a single prediction method, which may reduce the accuracy and reliability of the prediction. Here, we firstly presented a combinatorial target screening strategy to facilitate multi-target screening of natural products considering the characteristics of diverse in-silico target prediction methods, which consists of ligand-based online approaches, consensus SAR modelling and target-specific re-scoring function modelling. To validate the practicability of the strategy, natural product neferine, a bisbenzylisoquinoline alkaloid isolated from the lotus seed, was taken as an example to illustrate the screening process and a series of corresponding experiments were implemented to explore the pharmacological mechanisms of neferine. The proposed computational method could be used for a complementary hypothesis generation and rapid analysis of potential targets of natural products.
Collapse
Affiliation(s)
- Hui Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Yi-Di Guan
- Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Liu-Xia Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, PR China
| | - Yan Cheng
- The Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China; Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, PR China.
| |
Collapse
|
19
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
20
|
Steiger AK, Fansler SJ, Whidbey C, Miller CJ, Wright AT. Probe-enabled approaches for function-dependent cell sorting and characterization of microbiome subpopulations. Methods Enzymol 2020; 638:89-107. [PMID: 32416923 DOI: 10.1016/bs.mie.2020.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding the roles that individual species or communities play within a microbiome is a significant challenge. The complexity and heterogeneity of microbiomes presents a challenge to researchers looking to unravel the function that microbiomes serve within larger environments. While identification of the species and proteins present in a microbiome can be accomplished through genomics approaches, strategies that report on enzyme activity are limited. In this chapter, we describe the application of small molecule chemical probes in the isolation and subsequent characterization of microbiome subpopulations based on enzymatic function. We will cover protocols for labeling microbes with appropriate probes, microbiome sample preparation, and using fluorescence-activated cell sorting to isolate subpopulations based on function. We hope that the strategies outlined here will serve as a resource for researchers studying the functional role that microbiomes play in the gut and soil.
Collapse
Affiliation(s)
- Andrea K Steiger
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Sarah J Fansler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Christopher Whidbey
- Department of Chemistry, Seattle University, Seattle, Washington, United States
| | - Carson J Miller
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States.
| |
Collapse
|
21
|
Abstract
The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
22
|
Bilodeau DA, Margison KD, Ahmed N, Strmiskova M, Sherratt AR, Pezacki JP. Optimized aqueous Kinugasa reactions for bioorthogonal chemistry applications. Chem Commun (Camb) 2020; 56:1988-1991. [PMID: 31960852 DOI: 10.1039/c9cc09473c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kinugasa reactions hold potential for bioorthogonal chemistry in that the reagents can be biocompatible. Unlike other bioorthogonal reaction products, β-lactams are potentially reactive, which can be useful for synthesizing new biomaterials. A limiting factor for applications consists of slow reaction rates. Herein, we report an optimized aqueous copper(i)-catalyzed alkyne-nitrone cycloaddition involving rearrangement (CuANCR) with rate accelerations made possible by the use of surfactant micelles. We have investigated the factors that accelerate the aqueous CuANCR reaction and demonstrate enhanced modification of a model membrane-associated peptide. We discovered that lipids/surfactants and alkyne structure have a significant impact on the reaction rate, with biological lipids and electron-poor alkynes showing greater reactivity. These new findings have implications for the use of CuANCR for modifying integral membrane proteins as well as live cell labelling and other bioorthogonal applications.
Collapse
Affiliation(s)
- Didier A Bilodeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Wilkinson IVL, Perkins KJ, Dugdale H, Moir L, Vuorinen A, Chatzopoulou M, Squire SE, Monecke S, Lomow A, Geese M, Charles PD, Burch P, Tinsley JM, Wynne GM, Davies SG, Wilson FX, Rastinejad F, Mohammed S, Davies KE, Russell AJ. Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Kelly J. Perkins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Hannah Dugdale
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Lee Moir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Aini Vuorinen
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Maria Chatzopoulou
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Sarah E. Squire
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Sebastian Monecke
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Alexander Lomow
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Marcus Geese
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Philip D. Charles
- Department of BiochemistryUniversity of Oxford South Parks Rd Oxford OX1 3QU UK
- Target Discovery InstituteUniversity of OxfordOld Road Campus Roosevelt Drive Oxford OX3 7FZ UK
| | - Peter Burch
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Jonathan M. Tinsley
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Graham M. Wynne
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Stephen G. Davies
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Francis X. Wilson
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Fraydoon Rastinejad
- Target Discovery InstituteUniversity of OxfordOld Road Campus Roosevelt Drive Oxford OX3 7FZ UK
| | - Shabaz Mohammed
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Department of BiochemistryUniversity of Oxford South Parks Rd Oxford OX1 3QU UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Angela J. Russell
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Department of PharmacologyUniversity of Oxford Mansfield Road Oxford OX1 3PQ UK
| |
Collapse
|
24
|
Wilkinson IVL, Perkins KJ, Dugdale H, Moir L, Vuorinen A, Chatzopoulou M, Squire SE, Monecke S, Lomow A, Geese M, Charles PD, Burch P, Tinsley JM, Wynne GM, Davies SG, Wilson FX, Rastinejad F, Mohammed S, Davies KE, Russell AJ. Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angew Chem Int Ed Engl 2020; 59:2420-2428. [PMID: 31755636 PMCID: PMC7003794 DOI: 10.1002/anie.201912392] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease arising from mutations in the dystrophin gene. Upregulation of utrophin to compensate for the missing dystrophin offers a potential therapy independent of patient genotype. The first-in-class utrophin modulator ezutromid/SMT C1100 was developed from a phenotypic screen through to a Phase 2 clinical trial. Promising efficacy and evidence of target engagement was observed in DMD patients after 24 weeks of treatment, however trial endpoints were not met after 48 weeks. The objective of this study was to understand the mechanism of action of ezutromid which could explain the lack of sustained efficacy and help development of new generations of utrophin modulators. Using chemical proteomics and phenotypic profiling we show that the aryl hydrocarbon receptor (AhR) is a target of ezutromid. Several lines of evidence demonstrate that ezutromid binds AhR with an apparent KD of 50 nm and behaves as an AhR antagonist. Furthermore, other reported AhR antagonists also upregulate utrophin, showing that this pathway, which is currently being explored in other clinical applications including oncology and rheumatoid arthritis, could also be exploited in future DMD therapies.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Kelly J. Perkins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Hannah Dugdale
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Lee Moir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Aini Vuorinen
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Maria Chatzopoulou
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Sarah E. Squire
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Sebastian Monecke
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Alexander Lomow
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Marcus Geese
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Philip D. Charles
- Department of BiochemistryUniversity of OxfordSouth Parks RdOxfordOX1 3QUUK
- Target Discovery InstituteUniversity of OxfordOld Road CampusRoosevelt DriveOxfordOX3 7FZUK
| | - Peter Burch
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Jonathan M. Tinsley
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Graham M. Wynne
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Stephen G. Davies
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Francis X. Wilson
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Fraydoon Rastinejad
- Target Discovery InstituteUniversity of OxfordOld Road CampusRoosevelt DriveOxfordOX3 7FZUK
| | - Shabaz Mohammed
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of BiochemistryUniversity of OxfordSouth Parks RdOxfordOX1 3QUUK
| | - Kay E. Davies
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Angela J. Russell
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3PQUK
| |
Collapse
|
25
|
Xin BT, Espinal C, de Bruin G, Filippov DV, van der Marel GA, Florea BI, Overkleeft HS. Two-Step Bioorthogonal Activity-Based Protein Profiling of Individual Human Proteasome Catalytic Sites. Chembiochem 2020; 21:248-255. [PMID: 31597011 DOI: 10.1002/cbic.201900551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/12/2022]
Abstract
Bioorthogonal chemistry allows the selective modification of biomolecules in complex biological samples. One application of this methodology is in two-step activity-based protein profiling (ABPP), a methodology that is particularly attractive where direct ABPP using fluorescent or biotinylated probes is ineffective. Herein we describe a set of norbornene-modified, mechanism-based proteasome inhibitors aimed to be selective for each of the six catalytic sites of human constitutive proteasomes and immunoproteasomes. The probes developed for β1i, β2i, β5c, and β5i proved to be useful two-step ABPs that effectively label their developed proteasome subunits in both Raji cell extracts and living Raji cells through inverse-electron-demand Diels-Alder (iEDDA) ligation. The compound developed for β1c proved incapable of penetrating the cell membrane, but effectively labels β1c in vitro. The compound developed for β2c proved not selective, but its azide-containing analogue LU-002c proved effective in labeling of β2c via azide-alkyne click ligation chemistry both in vitro and in situ. In total, our results contribute to the growing list of proteasome activity tools to include five subunit-selective activity-based proteasome probes, four of which report on proteasome activities in living cells.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Christofer Espinal
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.,Present address, Acerta Pharma B.V., Industrielaan 63, 5349 AE, Oss, The Netherlands
| | - Dmitri V Filippov
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bogdan I Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
26
|
Arisawa M, Fukumoto K, Yamaguchi M. Rhodium-catalyzed phosphorylation reaction of water-soluble disulfides using hypodiphosphoric acid tetraalkyl esters in water. RSC Adv 2020; 10:13820-13823. [PMID: 35492965 PMCID: PMC9051538 DOI: 10.1039/d0ra02377a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
RhCl3catalyzed the phosphorylation reaction of water-soluble disulfides, including unprotected glutathione disulfide, with hypodiphosphoric acid tetraalkyl esters in homogeneous water.
Collapse
Affiliation(s)
- Mieko Arisawa
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| | - Kohei Fukumoto
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| | - Masahiko Yamaguchi
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
27
|
Conole D, Mondal M, Majmudar JD, Tate EW. Recent Developments in Cell Permeable Deubiquitinating Enzyme Activity-Based Probes. Front Chem 2019; 7:876. [PMID: 31921788 PMCID: PMC6930156 DOI: 10.3389/fchem.2019.00876] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) function to remove or cleave ubiquitin from post-translationally modified protein substrates. There are about 100 known DUBs in the proteome, and their dysregulation has been implicated a number of disease states, but the specific function of many subclass members remains poorly understood. Activity-based probes (ABPs) react covalently with an active site residue to report on specific enzyme activity, and thus represent a powerful method to evaluate cellular and physiological enzyme function and dynamics. Ubiquitin-based ABPs, such as HA-Ub-VME, an epitope-tagged ubiquitin carrying a C-terminal reactive warhead, are the leading tool for "DUBome" activity profiling. However, these probes are generally cell membrane impermeable, limiting their use to isolated enzymes or lysates. Development of cell-permeable ABPs would allow engagement of DUB enzymes directly within the context of an intact live cell or organism, refining our understanding of physiological and pathological function, and greatly enhancing opportunities for translational research, including target engagement, imaging and biomarker discovery. This mini-review discusses recent developments in small molecule activity-based probes that target DUBs in live cells, and the unique applications of cell-permeable DUB activity-based probes vs. their traditional ubiquitin-based counterparts.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Milon Mondal
- Department of Chemistry, Imperial College London, London, United Kingdom
| | | | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Tian Y, Wang S, Shang H, Wang WQ, Wang BQ, Zhang X, Xu XD, Sun GB, Sun XB. The clickable activity-based probe of anti-apoptotic calenduloside E. PHARMACEUTICAL BIOLOGY 2019; 57:133-139. [PMID: 30843752 PMCID: PMC6407588 DOI: 10.1080/13880209.2018.1557699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 05/27/2023]
Abstract
CONTEXT Calenduloside E (CE), one of the primary natural products found in Aralia elata (Miq.) Seem. (Araliaceae), possesses prominent anti-apoptotic potential. A previous study found that one of the anti-apoptotic CE targets is heat shock protein 90 AB1 (Hsp90AB1) by probe CE-P, while the other targets of CE still need to be identified with more efficient probes. OBJECTIVE This study investigates CE analogue (CEA) as one clickable activity-based probe for use in exploring anti-apoptotic CE targets. MATERIALS AND METHODS Pretreatment of HUVECs with CEA (1.25 μM) for 8 hr, followed by ox-LDL stimulation for 24 h. Flow cytometry analysis and JC-1 staining assays were performed The kinetic constant measurements were tested by the Biacore T200, CM5 Sensor Chip which was activated by using sulpho-NHS/EDC. Ligands were dissolved and injected with a concentration of 12.5, 6.25, 3.125, 1.56, 0.78 and 0 μM. RESULTS CEA was confirmed to possess an anti-apoptotic effect. The probable targets of CE/CEA were calculated, and as one of the higher scores proteins (Fit values: 0.88/0.86), Hsp90 properly got our attention. Molecular modelling study showed that both CE and CEA could bind to Hsp90 with the similar interaction, and the docking scores (S value) were -7.61 and -7.33. SPR assay provided more evidence to prove that CEA can interact with Hsp90 with the KD value 11.7 µM. DISCUSSION AND CONCLUSIONS Our results suggest that clickable probe CEA could alleviate ox-LDL induced apoptosis by a similar mechanism of anti-apoptotic CE, and afforded the possibility of identifying additional anti-apoptotic targets of CE.
Collapse
Affiliation(s)
- Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Zhong guan cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of new drug discovery based on Classic Chinese Academy of Medical Sciences
| | - Shan Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Zhong guan cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of new drug discovery based on Classic Chinese Academy of Medical Sciences
| | - Hai Shang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Zhong guan cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of new drug discovery based on Classic Chinese Academy of Medical Sciences
| | - Wen-Qian Wang
- Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Bao-Qi Wang
- Center of Research and Development on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Xi Zhang
- Center of Research and Development on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Zhong guan cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of new drug discovery based on Classic Chinese Academy of Medical Sciences
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Zhong guan cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of new drug discovery based on Classic Chinese Academy of Medical Sciences
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Zhong guan cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of new drug discovery based on Classic Chinese Academy of Medical Sciences
| |
Collapse
|
29
|
Wu G, Cheng B, Qian H, Ma S, Chen Q. Identification of HSP90 as a direct target of artemisinin for its anti-inflammatory activity via quantitative chemical proteomics. Org Biomol Chem 2019; 17:6854-6859. [DOI: 10.1039/c9ob01264h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global profiling of the target proteins of ART for its anti-inflammatory activity via ABPP combined with quantitative chemical proteomics.
Collapse
Affiliation(s)
- Guolin Wu
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Bao Cheng
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Qin Chen
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
30
|
Sadlowski C, Balderston S, Sandhu M, Hajian R, Liu C, Tran TP, Conboy MJ, Paredes J, Murthy N, Conboy IM, Aran K. Graphene-based biosensor for on-chip detection of bio-orthogonally labeled proteins to identify the circulating biomarkers of aging during heterochronic parabiosis. LAB ON A CHIP 2018; 18:3230-3238. [PMID: 30239548 PMCID: PMC6200589 DOI: 10.1039/c8lc00446c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies of heterochronic parabiosis, where two animals of different ages are joined surgically, provided proof-of-principle results that systemic proteins have broad age-specific effects on tissue health and repair. In an effort to identify these systemic proteins, we previously developed a method to selectively label the proteome of only one animal joined in parabiosis utilizing bio-orthogonal non-canonical amino acid tagging (BONCAT), which can metabolically label proteins during their de novo synthesis by incorporating a methionine substitute, azido-nor-leucine (ANL), in cells expressing a mutant methionyl-tRNA synthetase (MetRSL274G). Once labeled, we can selectively identify the proteins produced by the MetRSL274G transgenic mouse in the setting of heterochronic parabiosis. This approach enabled the detection of several rejuvenating protein candidates from the young parabiont, which were transferred to the old mammalian tissue through their shared circulation. Although BONCAT is a very powerful technology, the challenges associated with its complexity including large starting material requirements and cost of ANL-labeled protein detection, such as modified antibody arrays and mass spectrometry, limit its application. Herein, we propose a lab-on-a-chip technology, termed Click-A+Chip for facile and rapid digital detection of ANL-labeled proteomes present in minute amount of sample, to replace conventional assays. Click-A+Chip is a graphene-based field effect biosensor (gFEB) which utilizes novel on-chip click-chemistry to specifically bind to ANL-labeled biomolecules. In this study, Click-A+Chip is utilized for the capture of ANL-labeled proteins transferred from young to old parabiotic mouse partners. Moreover, we were able to identify the young-derived ANL-labeled Lif-1 and leptin in parabiotic systemic milieu, confirming previous data as well as providing novel findings on the relative levels of these factors in young versus old parabionts. Summarily, our results demonstrate that Click-A+Chip can be used for rapid detection and identification of ANL-labeled proteins, significantly reducing the sample size, complexity, cost and time associated with BONCAT analysis.
Collapse
Affiliation(s)
| | - Sarah Balderston
- Keck Graduate Institute, Claremont Colleges, Claremont
CA
- Scripps College, Claremont Colleges, Claremont CA
| | - Mandeep Sandhu
- Keck Graduate Institute, Claremont Colleges, Claremont
CA
- Scripps College, Claremont Colleges, Claremont CA
| | - Reza Hajian
- Keck Graduate Institute, Claremont Colleges, Claremont
CA
| | - Chao Liu
- University of California, Berkeley, Berkeley CA
| | | | | | | | | | | | - Kiana Aran
- University of California, Berkeley, Berkeley CA
- Keck Graduate Institute, Claremont Colleges, Claremont
CA
| |
Collapse
|
31
|
Wang S, Tian Y, Zhang JY, Xu HB, Zhou P, Wang M, Lu SB, Luo Y, Wang M, Sun GB, Xu XD, Sun XB. Targets Fishing and Identification of Calenduloside E as Hsp90AB1: Design, Synthesis, and Evaluation of Clickable Activity-Based Probe. Front Pharmacol 2018; 9:532. [PMID: 29875664 PMCID: PMC5974765 DOI: 10.3389/fphar.2018.00532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Calenduloside E (CE), a natural triterpenoid compound isolated from Aralia elata, can protect against ox-LDL-induced human umbilical vein endothelial cell (HUVEC) injury in our previous reports. However, the exact targets and mechanisms of CE remain elusive. For the sake of resolving this question, we designed and synthesized a clickable activity-based probe (CE-P), which could be utilized to fish the functional targets in HUVECs using a gel-based strategy. Based on the previous studies of the structure-activity relationship (SAR), we introduced an alkyne moiety at the C-28 carboxylic group of CE, which kept the protective and anti-apoptosis activity. Via proteomic approach, one of the potential proteins bound to CE-P was identified as Hsp90AB1, and further verification was performed by pure recombinant Hsp90AB1 and competitive assay. These results demonstrated that CE could bind to Hsp90AB1. We also found that CE could reverse the Hsp90AB1 decrease after ox-LDL treatment. To make our results more convincing, we performed SPR analysis and the affinity kinetic assay showed that CE/CE-P could bind to Hsp90AB1 in a dose-dependent manner. Taken together, our research showed CE could probably bind to Hsp90AB1 to protect the cell injury, which might provide the basis for the further exploration of its cardiovascular protective mechanisms. For the sake of resolving this question, we designed and synthesized a clickable activity-based probe (CE-P), which could be utilized to fish the functional targets in HUVECs using a gel-based strategy.
Collapse
Affiliation(s)
- Shan Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing-Yi Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui-Bo Xu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, China
| | - Ping Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sen-Bao Lu
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, United States
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Wang
- Life and Environmental Science Research Center, Harbin University of Commerce, Harbin, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Wang S, Tian Y, Wang M, Wang M, Sun GB, Sun XB. Advanced Activity-Based Protein Profiling Application Strategies for Drug Development. Front Pharmacol 2018; 9:353. [PMID: 29686618 PMCID: PMC5900428 DOI: 10.3389/fphar.2018.00353] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Drug targets and modes of action remain two of the biggest challenges in drug development. To address these problems, chemical proteomic approaches have been introduced to profile targets in complex proteomes. Activity-based protein profiling (ABPP) is one of a growing number chemical proteomic approaches that uses small-molecule chemical probes to understand the interaction mechanisms between compounds and targets. ABPP can be used to identify the protein targets of small molecules and even the active sites of target proteins. This review focuses on the overall workflow of the ABPP technology and on additional advanced strategies for target identification and/or drug discovery. Herein, we mainly describe the design strategies for small-molecule probes and discuss the ways in which these probes can be used to identify targets and even validate the interactions of small molecules with targets. In addition, we discuss some basic strategies that have been developed to date, such as click chemistry-ABPP, competitive strategies and, recently, more advanced strategies, including isoTOP-ABPP, fluoPol-ABPP, and qNIRF-ABPP. The isoTOP-ABPP strategy has been coupled with quantitative proteomics to identify the active sites of proteins and explore whole proteomes with specific amino acid profiling. FluoPol-ABPP combined with HTS can be used to discover new compounds for some substrate-free enzymes. The qNIRF-ABPP strategy has a number of applications for in vivo imaging. In this review, we will further discuss the applications of these advanced strategies.
Collapse
Affiliation(s)
- Shan Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Life and Environmental Science Research Center, Harbin University of Commerce, Harbin, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Graham E, Rymarchyk S, Wood M, Cen Y. Development of Activity-Based Chemical Probes for Human Sirtuins. ACS Chem Biol 2018; 13:782-792. [PMID: 29385333 DOI: 10.1021/acschembio.7b00754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sirtuins consume stoichiometric amounts of nicotinamide adenine dinucleotide (NAD+) to remove an acetyl group from lysine residues. These enzymes have been implicated in regulating various cellular events and have also been suggested to mediate the beneficial effects of calorie restriction (CR). However, controversies on sirtuin biology also peaked during the past few years because of conflicting results from different research groups. This is partly because these enzymes have been discovered recently and the intricate interaction loops between sirtuins and other proteins make the characterization of them extremely difficult. Current molecular biology and proteomics techniques report protein abundance rather than active sirtuin content. Innovative chemical tools that can directly probe the functional state of sirtuins are desperately needed. We have obtained a set of powerful activity-based chemical probes that are capable of assessing the active content of sirtuins in model systems. These probes consist of a chemical "warhead" that binds to the active site of active enzyme and a handle that can be used for the visualization of these enzymes by fluorescence. In complex native proteome, the probes can selectively "highlight" the active sirtuin components. Furthermore, these probes were also able to probe the dynamic change of sirtuin activity in response to cellular stimuli. These chemical probes and the labeling strategies will provide transformative technology to allow the direct linking of sirtuin activity to distinct physiological processes. They will create new opportunities to investigate how sirtuins provide health benefits in adapting cells to environmental cues and provide critical information to dissect sirtuin regulatory networks.
Collapse
Affiliation(s)
- Elysian Graham
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Stacia Rymarchyk
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Marci Wood
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Yana Cen
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| |
Collapse
|
34
|
Peyton SR, Gencoglu MF, Galarza S, Schwartz AD. Biomaterials in Mechano-oncology: Means to Tune Materials to Study Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:253-287. [PMID: 30368757 DOI: 10.1007/978-3-319-95294-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ECM stiffness is emerging as a prognostic marker of tumor aggression or potential for relapse. However, conflicting reports muddle the question of whether increasing or decreasing stiffness is associated with aggressive disease. This chapter discusses this controversy in more detail, but the fact that tumor stiffening plays a key role in cancer progression and in regulating cancer cell behaviors is clear. The impact of having in vitro biomaterial systems that could capture this stiffening during tumor evolution is very high. These cell culture platforms could help reveal the mechanistic underpinnings of this evolution, find new therapeutic targets to inhibit the cross talk between tumor development and ECM stiffening, and serve as better, more physiologically relevant platforms for drug screening.
Collapse
Affiliation(s)
- Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Maria F Gencoglu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sualyneth Galarza
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Alyssa D Schwartz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
35
|
Bonyasi R, Gholinejad M, Saadati F, Nájera C. Copper ferrite nanoparticle modified starch as a highly recoverable catalyst for room temperature click chemistry: multicomponent synthesis of 1,2,3-triazoles in water. NEW J CHEM 2018. [DOI: 10.1039/c7nj03284f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly water dispersible CuFe2O4@Starch catalyzed click reaction.
Collapse
Affiliation(s)
- Reza Bonyasi
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
- Iran
| | - Mohammad Gholinejad
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Gavazang
- Iran
| | - Fariba Saadati
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
- Iran
| | - Carmen Nájera
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- Spain
| |
Collapse
|
36
|
Roscales S, Plumet J. Metal-catalyzed 1,3-dipolar cycloaddition reactions of nitrile oxides. Org Biomol Chem 2018; 16:8446-8461. [DOI: 10.1039/c8ob02072h] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review recent advances in the metal-catalyzed 1,3-dipolar cycloaddition reactions of nitrile oxides are highlighted, covering references from the period 2000 until August 2018.
Collapse
Affiliation(s)
- Silvia Roscales
- Universidad Complutense
- Facultad de Química
- Departamento de Química Orgánica
- Ciudad Universitaria
- Madrid
| | - Joaquín Plumet
- Universidad Complutense
- Facultad de Química
- Departamento de Química Orgánica
- Ciudad Universitaria
- Madrid
| |
Collapse
|
37
|
Affiliation(s)
- Hope A. Flaxman
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
38
|
Yang L, Chumsae C, Kaplan JB, Moulton KR, Wang D, Lee DH, Zhou ZS. Detection of Alkynes via Click Chemistry with a Brominated Coumarin Azide by Simultaneous Fluorescence and Isotopic Signatures in Mass Spectrometry. Bioconjug Chem 2017; 28:2302-2309. [DOI: 10.1021/acs.bioconjchem.7b00354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lihua Yang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Chris Chumsae
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
| | - Jenifer B. Kaplan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
| | - Kevin Ryan Moulton
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Dongdong Wang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
| | - David H. Lee
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
| | - Zhaohui Sunny Zhou
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
39
|
Guo H, Li Z. Developments of bioorthogonal handle-containing photo-crosslinkers for photoaffinity labeling. MEDCHEMCOMM 2017; 8:1585-1591. [PMID: 30108869 PMCID: PMC6071706 DOI: 10.1039/c7md00217c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/14/2017] [Indexed: 01/14/2023]
Abstract
Photoaffinity labeling (PAL) has been widely applied in various research areas such as medicinal chemistry, chemical biology and structural biology, owing to its capability of investigating non-covalent ligand-protein interactions under native environments and elucidating protein structures, functions etc. One important application of this technique is to use affinity-based proteome profiling (AfBP) coupled with bioimaging for profiling drug-target interactions in situ. In order to accurately report drug-target interactions via these approaches, several considerations as follows need to be made: (1) maximally retaining bioactivities of photoprobes upon functionalization with a photoreactive group and a reporter tag from a parental compound; (2) performing proteome profiling and imaging in situ simultaneously, to monitor drug-target interactions in different manners; and (3) developing excellent photo-crosslinkers capable of photo-crosslinking and fluorescence turn-on at the same time. With these considerations in mind, we have developed three versions of "minimalist" bioorthogonal handle-containing photo-crosslinkers (L3-L6) during the years and successfully applied them in all kinds of small bioactive molecules for protein labeling and cellular imaging studies. In this mini-review, the features and functions of these linkers are specifically highlighted and summarized.
Collapse
Affiliation(s)
- Haijun Guo
- College of Pharmacy , Jinan University , Guangzhou , 510632 China .
| | - Zhengqiu Li
- College of Pharmacy , Jinan University , Guangzhou , 510632 China .
| |
Collapse
|
40
|
Zhang X, Lu W, Kwan K, Bhattacharyya D, Wei Y. Dual-Functional-Tag-Facilitated Protein Labeling and Immobilization. ACS OMEGA 2017; 2:522-528. [PMID: 30023610 PMCID: PMC6044709 DOI: 10.1021/acsomega.6b00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 06/08/2023]
Abstract
An important strategy in the construction of biomimetic membranes and devices is to use natural proteins as the functional components for incorporation in a polymeric or nanocomposite matrix. Toward this goal, an important step is to immobilize proteins with high efficiency and precision without disrupting the protein function. Here, we developed a dual-functional tag containing histidine and the non-natural amino acid azidohomoalanine (AHA). AHA is metabolically incorporated into the protein, taking advantage of the Met-tRNA and Met-tRNA synthetase. Histidine in the tag can facilitate metal-affinity purification, whereas AHA can react with an alkyne-functionalized probe or surface via well-established click chemistry. We tested the performance of the tag using two model proteins, green fluorescence protein and an enzyme pyrophosphatase. We found that the addition of the tag and the incorporation of AHA did not significantly impair the properties of these proteins, and the histidine-AHA tag can facilitate protein purification, immobilization, and labeling.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department
of Chemistry and Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Wei Lu
- Department
of Chemistry and Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kevin Kwan
- Department
of Chemistry and Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Dibakar Bhattacharyya
- Department
of Chemistry and Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yinan Wei
- Department
of Chemistry and Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
41
|
Ourailidou ME, Lenoci A, Zwergel C, Rotili D, Mai A, Dekker FJ. Towards the development of activity-based probes for detection of lysine-specific demethylase-1 activity. Bioorg Med Chem 2017; 25:847-856. [PMID: 27989416 PMCID: PMC5292237 DOI: 10.1016/j.bmc.2016.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
The implications of lysine-specific demethylase-1 (LSD1) in tumorigenesis have urged scientists to develop diagnostic tools in order to explore the function of this enzyme. In this work, we present our efforts on the development of tranylcypromine (TCP)-based functionalized probes for activity-based protein profiling (ABPP) of LSD1 activity. Biotinylated forms of selected compounds enabled dose-dependent enzyme labeling of recombinant LSD1. However, treatment with LSD1 inhibitors did not clearly reduce the LSD1 labeling efficiency thus indicating that labeling using these probes is not activity dependent. This calls for alternative strategies to develop probes for ABPP of the enzyme LSD1.
Collapse
Affiliation(s)
- Maria E Ourailidou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Alessia Lenoci
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci Bolognetti Foundation, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
42
|
Wages PA. Detecting Protein Sulfenylation in Cells Exposed to a Toxicant. ACTA ACUST UNITED AC 2017; 71:17.18.1-17.18.12. [PMID: 28146279 DOI: 10.1002/cptx.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein sulfenylation is a post-translational modification that is linked to many cell signaling networks and specific protein functions, thus the detection of any sulfenylated protein after a toxicological exposure is of importance. Specifically, the detection of protein sulfenylation can provide multiple levels of mechanistic insight towards understanding the impact of a toxicological exposure. For instance, sulfenylation is caused by only a handful of reactive chemical species. Any altered sulfenylation suggests a change in cellular health, and the elucidation of the specific protein target that undergoes sulfenylation can help ascertain downstream targets and associated adverse outcomes. This document describes straightforward approaches to detect protein sulfenylation of total protein as well as individual proteins of interest with a focus on immunoblotting approaches. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Phillip A Wages
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
43
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
44
|
Qian L, Zhang CJ, Wu J, Yao SQ. Fused Bicyclic Caspase-1 Inhibitors Assembled by Copper-Free Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC). Chemistry 2016; 23:360-369. [DOI: 10.1002/chem.201603150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Linghui Qian
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Chong-Jing Zhang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Ji'en Wu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
45
|
Chai Q, Webb SR, Wang Z, Dutch RE, Wei Y. Study of the degradation of a multidrug transporter using a non-radioactive pulse chase method. Anal Bioanal Chem 2016; 408:7745-7751. [PMID: 27549795 PMCID: PMC5063704 DOI: 10.1007/s00216-016-9871-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/04/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
Proteins are constantly synthesized and degraded in living cells during their growth and division, often in response to metabolic and environmental conditions. The synthesis and breakdown of proteins under different conditions reveal information about their mechanism of function. The metabolic incorporation of non-natural amino acid azidohomoalanine (AHA) and subsequent labeling via click chemistry emerged as a non-radioactive strategy useful in the determination of protein kinetics and turnover. We used the method to monitor the degradation of two proteins involved in the multidrug efflux in Escherichia coli, the inner membrane transporter AcrB and its functional partner membrane fusion protein AcrA. Together they form a functional complex with an outer membrane channel TolC to actively transport various small molecule compounds out of E. coli cells. We found that both AcrA and AcrB lasted for approximately 6 days in live E. coli cells, and the stability of AcrB depended on the presence of AcrA but not on active efflux. These results lead to new insight into the multidrug resistance in Gram-negative bacteria conferred by efflux.
Collapse
Affiliation(s)
- Qian Chai
- Department of Chemistry, University of Kentucky, 305 Chemistry-Physics Building, Lexington, KY, 40506, USA
| | - Stacy R Webb
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhaoshuai Wang
- Department of Chemistry, University of Kentucky, 305 Chemistry-Physics Building, Lexington, KY, 40506, USA
| | - Rebecca E Dutch
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, 305 Chemistry-Physics Building, Lexington, KY, 40506, USA.
| |
Collapse
|
46
|
Wells SM, Widen JC, Harki DA, Brummond KM. Alkyne Ligation Handles: Propargylation of Hydroxyl, Sulfhydryl, Amino, and Carboxyl Groups via the Nicholas Reaction. Org Lett 2016; 18:4566-9. [PMID: 27570975 DOI: 10.1021/acs.orglett.6b02088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Nicholas reaction has been applied to the installation of alkyne ligation handles. Acid-promoted propargylation of hydroxyl, sulfhydryl, amino, and carboxyl groups using dicobalt hexacarbonyl-stabilized propargylium ions is reported. This method is useful for introduction of propargyl groups into base-sensitive molecules, thereby expanding the toolbox of methods for the incorporation of alkynes for bio-orthogonal reactions. High-value molecules are used as the limiting reagent, and various propargylium ion precursors are compared.
Collapse
Affiliation(s)
- Sarah M Wells
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15206, United States
| | - John C Widen
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kay M Brummond
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15206, United States
| |
Collapse
|
47
|
McCulloch IP, La Clair JJ, Jaremko MJ, Burkart MD. Fluorescent Mechanism-Based Probe for Aerobic Flavin-Dependent Enzyme Activity. Chembiochem 2016; 17:1598-601. [PMID: 27271974 DOI: 10.1002/cbic.201600275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 12/27/2022]
Abstract
Diversity in non-ribosomal peptide and polyketide secondary metabolism is facilitated by interactions between biosynthetic domains with discrete monomer loading and their cognate tailoring enzymes, such as oxidation or halogenation enzymes. The cooperation between peptidyl carrier proteins and flavin-dependent enzymes offers a specialized strategy for monomer selectivity for oxidization of small molecules from within a complex cellular milieu. In an effort to study this process, we have developed fluorescent probes to selectively label aerobic flavin-dependent enzymes. Here we report the preparation and implementation of these tools to label oxidase, monooxygenase, and halogenase flavin-dependent enzymes.
Collapse
Affiliation(s)
- Ian P McCulloch
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0358, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0358, USA
| | - Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0358, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0358, USA.
| |
Collapse
|
48
|
Gregory KJ, Velagaleti R, Thal DM, Brady RM, Christopoulos A, Conn PJ, Lapinsky DJ. Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 5 Based on Select Acetylenic Negative Allosteric Modulators. ACS Chem Biol 2016; 11:1870-9. [PMID: 27115427 DOI: 10.1021/acschembio.6b00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest class of current drug targets. In particular, small-molecule allosteric modulators offer substantial potential for selectively "tuning" GPCR activity. However, there remains a critical need for experimental strategies that unambiguously determine direct allosteric ligand-GPCR interactions, to facilitate both chemical biology studies and rational structure-based drug design. We now report the development and use of first-in-class clickable allosteric photoprobes for a GPCR based on metabotropic glutamate receptor 5 (mGlu5) negative allosteric modulator (NAM) chemotypes. Select acetylenic mGlu5 NAM lead compounds were rationally modified to contain either a benzophenone or an aryl azide as a photoreactive functional group, enabling irreversible covalent attachment to mGlu5 via photoactivation. Additionally, a terminal alkyne or an aliphatic azide was incorporated as a click chemistry handle, allowing chemoselective attachment of fluorescent moieties to the irreversibly mGlu5-bound probe via tandem photoaffinity labeling-bioorthogonal conjugation. These clickable photoprobes retained submicromolar affinity for mGlu5 and negative cooperativity with glutamate, interacted with the "common allosteric-binding site," displayed slow binding kinetics, and could irreversibly label mGlu5 following UV exposure. We depleted the number of functional mGlu5 receptors using an irreversibly bound NAM to elucidate and delineate orthosteric agonist affinity and efficacy. Finally, successful conjugation of fluorescent dyes via click chemistry was demonstrated for each photoprobe. In the future, these clickable photoprobes are expected to aid our understanding of the structural basis of mGlu5 allosteric modulation. Furthermore, tandem photoaffinity labeling-bioorthogonal conjugation is expected to be a broadly applicable experimental strategy across the entire GPCR superfamily.
Collapse
Affiliation(s)
- Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Ranganadh Velagaleti
- Division
of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, United States
| | - David M. Thal
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Ryan M. Brady
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - P. Jeffrey Conn
- Vanderbilt
Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David J. Lapinsky
- Division
of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
49
|
Wang C, Ikhlef D, Kahlal S, Saillard JY, Astruc D. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, Miyamoto DK, Goga A, Weerapana E, Nomura DK. GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity. Cell Chem Biol 2016; 23:567-578. [PMID: 27185638 DOI: 10.1016/j.chembiol.2016.03.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 01/08/2023]
Abstract
Breast cancers possess fundamentally altered metabolism that fuels their pathogenicity. While many metabolic drivers of breast cancers have been identified, the metabolic pathways that mediate breast cancer malignancy and poor prognosis are less well understood. Here, we used a reactivity-based chemoproteomic platform to profile metabolic enzymes that are enriched in breast cancer cell types linked to poor prognosis, including triple-negative breast cancer (TNBC) cells and breast cancer cells that have undergone an epithelial-mesenchymal transition-like state of heightened malignancy. We identified glutathione S-transferase Pi 1 (GSTP1) as a novel TNBC target that controls cancer pathogenicity by regulating glycolytic and lipid metabolism, energetics, and oncogenic signaling pathways through a protein interaction that activates glyceraldehyde-3-phosphate dehydrogenase activity. We show that genetic or pharmacological inactivation of GSTP1 impairs cell survival and tumorigenesis in TNBC cells. We put forth GSTP1 inhibitors as a novel therapeutic strategy for combatting TNBCs through impairing key cancer metabolism and signaling pathways.
Collapse
Affiliation(s)
- Sharon M Louie
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elizabeth A Grossman
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lisa A Crawford
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Lucky Ding
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roman Camarda
- Department of Cell and Tissue Biology and Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tucker R Huffman
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David K Miyamoto
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology and Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Daniel K Nomura
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|