1
|
Souza GB, Santos TAC, Silva APS, Barreiros ALBS, Nardelli VB, Siqueira IB, Dolabella SS, Costa EV, Alves PB, Scher R, Fernandes RPM. Synthesis of chalcone derivatives by Claisen-Schmidt condensation and in vitro analyses of their antiprotozoal activities. Nat Prod Res 2024; 38:1326-1333. [PMID: 36331421 DOI: 10.1080/14786419.2022.2140337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Chalcone is a molecule with known biological activities. Based on this, a series of chalcone derivatives bearing methyl, phenyl or furanyl substituents at different positions of A and B rings were synthesised, characterised, and evaluated regarding antiprotozoal activity. Molecules were synthesised via base catalyzed Claisen-Schmidt condensation and characterised by IR and NMR spectral data. Antiprotozoal activity against Phytomonas serpens, Leishmania amazonensis and Acanthamoeba polyphaga was performed. All compounds inhibited more than 50% of the growth of P. serpens while five had this effect on L. amazonensis and all of them no more than 35% of inhibition on A. polyphaga. Remarkably interesting antiprotozoal effects were recorded with compound 5, with IC50 of 1.59 µM for P. serpens and 11.49 µM for L. amazonensis. The addition of a naphthyl group to the B ring can be postulated to be the cause of the 10 times increase observed in its trypanocidal activity.
Collapse
Affiliation(s)
- Gabriella B Souza
- Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Tamiris A C Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Amanda P S Silva
- Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | | | | | - Ingrid B Siqueira
- Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Silvio S Dolabella
- Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Emmanoel V Costa
- Departamento de Química, Universidade Federal do Amazonas, Manaus, AM, Brasil
| | - Péricles B Alves
- Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Ricardo Scher
- Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Roberta P M Fernandes
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| |
Collapse
|
2
|
Jeong GH, Lee H, Lee SS, Chung BY, Bai HW, Kim TH. Inhibitory Effects of Thermolysis Transformation Products of Rotenone on Nitric Oxide Production. Int J Mol Sci 2023; 24:ijms24076095. [PMID: 37047068 PMCID: PMC10093917 DOI: 10.3390/ijms24076095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Rotenone, isolated from Derris, Lonchocarpus, and Tephrosia from the family Fabaceae, has been shown to have a variety of biological properties and is used in various agricultural industries as a potent biopesticide. However, recent reports have demonstrated that rotenone has the potential to cause several adverse effects such as a neurodegenerative disease. This study aimed to induce thermolysis of the biopesticide rotenone and enhance the functionality of the degraded products. Rotenone (1) was degraded after autoclaving for 12 h, and the thermolytic reactants showed enhanced anti-inflammatory capacity against nitric oxide (NO) production. The structures of the newly modified products were spectroscopically determined. The thermal reaction products included various isoflavonoid derivatives 2-6, whose structures were characterized as being produced via chemical reactions in rotenone at the C-12 positions. Among the degraded products, (-)-tubaic acid (6) exhibited significantly improved anti-inflammatory effects compared to the original rotenone. Quantitative LC-MS analysis of the major thermolysis products generated in Derris extract containing rotenone was performed using isolate 2-5 purified from autoclaved rotenone. These results suggest that the thermal transformation of rotenone can improve the functionality of anti-inflammatory agents.
Collapse
Affiliation(s)
- Gyeong Han Jeong
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology (KIT), Jeongeup 56212, Republic of Korea
| | - Hanui Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology (KIT), Jeongeup 56212, Republic of Korea
| | - Seung Sik Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
| | - Hyoung-Woo Bai
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology (KIT), Jeongeup 56212, Republic of Korea
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
3
|
Synthesis, characterization, antioxidant and antiparasitic activities new naphthyl-thiazole derivatives. Exp Parasitol 2023; 248:108498. [PMID: 36907541 DOI: 10.1016/j.exppara.2023.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
In this work, 13 thiosemicarbazones (1a - m) and 16 thiazoles (2a - p) were obtained, which were properly characterized by spectroscopic and spectrometric techniques. The pharmacokinetic properties obtained in silico revealed that the derivatives are in accordance with the parameters established by lipinski and veber, showing that such compounds have good bioavailability or permeability when administered orally. In assays of antioxidant activity, thiosemicarbazones showed moderate to high antioxidant potential when compared to thiazoles. In addition, they were able to interact with albumin and DNA. Screening assays to assess the toxicity of compounds to mammalian cells revealed that thiosemicarbazones were less toxic when compared to thiazoles. In relation to in vitro antiparasitic activity, thiosemicarbazones and thiazoles showed cytotoxic potential against the parasites Leishmania amazonensis and Trypanosoma cruzi. Among the compounds, 1b, 1j and 2l stood out, showing inhibition potential for the amastigote forms of the two parasites. As for the in vitro antimalarial activity, thiosemicarbazones did not inhibit Plasmodium falciparum growth. In contrast, thiazoles promoted growth inhibition. This study shows in a preliminary way that the synthesized compounds have antiparasitic potential in vitro.
Collapse
|
4
|
Santos TAC, Silva KP, Souza GB, Alves PB, Menna-Barreto RFS, Scher R, Fernandes RPM. Chalcone Derivative Induces Flagellar Disruption and Autophagic Phenotype in Phytomonas serpens In Vitro. Pathogens 2023; 12:pathogens12030423. [PMID: 36986345 PMCID: PMC10051746 DOI: 10.3390/pathogens12030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Phytomonas serpens is a trypanosomatid phytoparasite, found in a great variety of species, including tomato plants. It is a significant problem for agriculture, causing high economic loss. In order to reduce the vegetal infections, different strategies have been used. The biological activity of molecules obtained from natural sources has been widely investigated to treat trypanosomatids infections. Among these compounds, chalcones have been shown to have anti-parasitic and anti-inflammatory effects, being described as having a remarkable activity on trypanosomatids, especially in Leishmania species. Here, we evaluated the antiprotozoal activity of the chalcone derivative (NaF) on P. serpens promastigotes, while also assessing its mechanism of action. The results showed that treatment with the derivative NaF for 24 h promotes an important reduction in the parasite proliferation (IC50/24 h = 23.6 ± 4.6 µM). At IC50/24 h concentration, the compound induced an increase in reactive oxygen species (ROS) production and a shortening of the unique flagellum of the parasites. Electron microscopy evaluation reinforced the flagellar phenotype in treated promastigotes, and a dilated flagellar pocket was frequently observed. The treatment also promoted a prominent autophagic phenotype. An increased number of autophagosomes were detected, presenting different levels of cargo degradation, endoplasmic reticulum profiles surrounding different cellular structures, and the presence of concentric membranar structures inside the mitochondrion. Chalcone derivatives may present an opportunity to develop a treatment for the P. serpens infection, as they are easy to synthesize and are low in cost. In order to develop a new product, further studies are still necessary.
Collapse
Affiliation(s)
- Tamiris A. C. Santos
- Laboratório de Enzimologia, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Kleiton P. Silva
- Laboratório de Enzimologia, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Gabriella B. Souza
- Laboratório de Química, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Péricles B. Alves
- Laboratório de Química, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Rubem F. S. Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil
- Correspondence: (R.F.S.M.-B.); (R.P.M.F.)
| | - Ricardo Scher
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
- Laboratório de Biologia Celular e Imunologia do Câncer e Leishmania, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Roberta P. M. Fernandes
- Laboratório de Enzimologia, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
- Programa de Pós-Graduação em Agricultura e Biodiversidade, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
- Correspondence: (R.F.S.M.-B.); (R.P.M.F.)
| |
Collapse
|
5
|
Cruz Filho IJDA, Oliveira JFDE, Santos ACS, Pereira VRA, Lima MCADE. Synthesis of 4-(4-chlorophenyl)thiazole compounds: in silico and in vitro evaluations as leishmanicidal and trypanocidal agents. AN ACAD BRAS CIENC 2023; 95:e20220538. [PMID: 37132749 DOI: 10.1590/0001-3765202320220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
Neglected tropical diseases are a diverse group of communicable pathologies that mainly prevail in tropical and subtropical regions. Thus, the objective of this work was to evaluate the biological potential of eight 4-(4-chlorophenyl)thiazole compounds. Tests were carried out in silico to evaluate the pharmacokinetic properties, the antioxidant, cytotoxic activities in animal cells and antiparasitic activities were evaluated against the different forms of Leishmania amazonensis and Trypanosoma cruzi in vitro. The in silico study showed that the evaluated compounds showed good oral availability. In a preliminary in vitro study, the compounds showed moderate to low antioxidant activity. Cytotoxicity assays show that the compounds showed moderate to low toxicity. In relation to leishmanicidal activity, the compounds presented IC50 values that ranged from 19.86 to 200 µM for the promastigote form, while for the amastigote forms, IC50 ranged from 101 to more than 200 µM. The compounds showed better results against the forms of T. cruzi with IC50 ranging from 1.67 to 100 µM for the trypomastigote form and 1.96 to values greater than 200 µM for the amastigote form. This study showed that thiazole compounds can be used as future antiparasitic agents.
Collapse
Affiliation(s)
- Iranildo José DA Cruz Filho
- Federal University of Pernambuco (UFPE), Department of Antibiotics, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Jamerson F DE Oliveira
- University of International Integration of Afro-Brazilian Lusophony (UNILAB), Av. da Abolição, 3, Centro 62790-970 Redenção, CE, Brazil
| | - Aline Caroline S Santos
- Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Prof. Moraes Rego, 1235, Cidade Universitária 50670-901 Recife, PE, Brazil
| | - Valéria R A Pereira
- Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Prof. Moraes Rego, 1235, Cidade Universitária 50670-901 Recife, PE, Brazil
| | - Maria Carmo A DE Lima
- Federal University of Pernambuco (UFPE), Department of Antibiotics, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
6
|
Gouveia ALA, Santos FAB, Alves LC, Cruz-Filho IJ, Silva PR, Jacob ITT, Soares JCS, Santos DKDN, Souza TRCL, Oliveira JF, Lima MDCA. Thiazolidine derivatives: In vitro toxicity assessment against promastigote and amastigote forms of Leishmania infantum and ultrastructural study. Exp Parasitol 2022; 236-237:108253. [PMID: 35381223 DOI: 10.1016/j.exppara.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
Neglected diseases, such as Leishmaniasis, constitute a group of communicable diseases that occur mainly in tropical countries. Considered a public health problem with limited treatment. Therefore, there is a need for new therapies. In this sense, our proposal was to evaluate in vitro two series of thiazolidine compounds (7a-7e and 8a-8e) against Leishmania infantum. We performed in vitro evaluations through macrophage cytotoxicity assays (J774) and nitric oxide production, activity against promastigotes and amastigotes, as well as ultrastructural analyzes in promastigotes. In the evaluation of cytotoxicity, the thiazolidine compounds presented CC50 values between 8.52 and 126.83 μM. Regarding the evaluation against the promastigote forms, the IC50 values ranged between 0.42 and 142.43 μM. Compound 7a was the most promising, as it had the lowest IC50. The parasites treated with compound 7a showed several changes, such as cell body shrinkage, shortening and loss of the flagellum, intense mitochondrial edema and cytoplasmic vacuolization, leading the parasite to cell inviability. In assays against the amastigote forms, the compound showed a low IC50 (0.65 μM). These results indicate that compound 7a was efficient for both evolutionary forms of the parasite. In silico studies suggest that the compound has good oral bioavailability. These results show that compound 7a is a potential drug candidate for the treatment of Leishmaniasis.
Collapse
Affiliation(s)
- Allana L A Gouveia
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Fábio A B Santos
- Aggeu Magalhães Institut. Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Luiz C Alves
- Aggeu Magalhães Institut. Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Iranildo José Cruz-Filho
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Paula R Silva
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Iris T T Jacob
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - José Cleberson S Soares
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Dayane K D N Santos
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Tulio Ricardo C L Souza
- Rural University of Pernambuco, Academic Unit of Belo Jardim, 55156-580, Belo Jardim, PE, Brazil
| | - Jamerson F Oliveira
- University for the International Integration of Afro-Brazilian Lusophony (UNILAB), 62790-970, Redenção, CE, Brazil
| | - Maria do Carmo A Lima
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil.
| |
Collapse
|
7
|
Vicente-Barrueco A, Román ÁC, Ruiz-Téllez T, Centeno F. In Silico Research of New Therapeutics Rotenoids Derivatives against Leishmania amazonensis Infection. BIOLOGY 2022; 11:biology11010133. [PMID: 35053132 PMCID: PMC8772715 DOI: 10.3390/biology11010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Yearly, 1,500,000 cases of leishmaniasis are diagnosed, causing thousands of deaths. To advance in its therapy, we present an interdisciplinary protocol that unifies ethnobotanical knowledge of natural compounds and the latest bioinformatics advances to respond to an orphan disease such as leishmaniasis and specifically the one caused by Leishmania amazonensis. The use of ethnobotanical information serves as a basis for the development of new drugs, a field in which computer-aided drug design (CADD) has been a revolution. Taking this information from Amazonian communities, located in the area with a high prevalence of this disease, a protocol has been designed to verify new leads. Moreover, a method has been developed that allows the evaluation of lead molecules, and the improvement of their affinity and specificity against therapeutic targets. Through this approach, deguelin has been identified as a good lead to treat the infection due to its potential as an ornithine decarboxylase (ODC) inhibitor, a key enzyme in Leishmania development. Using an in silico-generated combinatorial library followed by docking approaches, we have found deguelin derivatives with better affinity and specificity against ODC than the original compound, suggesting that this approach could be adapted for developing new drugs against leishmaniasis.
Collapse
Affiliation(s)
- Adrián Vicente-Barrueco
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Ángel Carlos Román
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
- Correspondence: (Á.C.R.); (F.C.)
| | - Trinidad Ruiz-Téllez
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Francisco Centeno
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain;
- Correspondence: (Á.C.R.); (F.C.)
| |
Collapse
|
8
|
Upegui Zapata YA, Echeverri F, Quiñones W, Torres F, Nacher M, Rivas LI, Meira CDS, Gedamu L, Escobar G, Archbold R, Vélez ID, Robledo SM. Mode of action of a formulation containing hydrazones and saponins against leishmania spp. Role in mitochondria, proteases and reinfection process. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:94-106. [PMID: 32734890 PMCID: PMC7334304 DOI: 10.1016/j.ijpddr.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Toxicity and poor adherence to treatment that favors the generation of resistance in the Leishmania parasites highlight the need to develop better alternatives. Here, we evaluated the in vitro effectiveness of hydrazone derived from chromanes 2-(2,3-dihydro-4H-1-benzothiopyran-4-ylidene) hydrazide (TC1) and 2-(2,3-dihydro-4H-1-benzopyran-4-ylidene) hydrazide (TC2) and the mixture of triterpene saponin hederagenin-3-O-(3,4-O-diacetyl-ß-D-xylopyranosyl-(1à3)-a-L- rhamnopyranosyl-(1à2)-a-L-arabinofuranoside, hederagenin-3-O-(3,4-O-diacetyl-a-L- arabinopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside and, hederagenin-3-O-(4-O-acetyl-ß-D-xylopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside from Sapindus saponaria (SS) on L. braziliensis and L. pifanoi. Mixtures of TC1 or TC2 with saponin were formulated for topical application and the therapeutic effectiveness was evaluated in the model for cutaneous leishmaniasis (CL) in golden hamster. The mode of action of these compounds was tested on various parasite processes and ultrastructural parasite modifications. TC1, TC2 and SS showed moderate cytotoxicity when tested independently but toxicity was improved when tested in combination. The compounds were more active against intracellular Leishmania amastigotes. In vivo studies showed that combinations of TC1 or TC2 with SS in 1:1 ratio (w/w) cured 100% of hamsters with no signs associated with toxicity. The compounds did cause changes in the mitochondrial activity of the parasite with a decrease in ATP levels and depolarization of membrane potential and overproduction of reactive oxygen species; nevertheless, these effects were not related to alterations in membrane permeability. The phagolysosome ultrastructure was also affected impacting the survival of Leishmania but the function of the lysosome nor the pH inside the phagolysosome did not change. Lastly, there was a protease inhibition which was directly related to the decrease in the ability of Leishmania to infect and multiply inside the macrophage. The results suggest that the combination of TC1 and TC2 with SS in a 1:1 ratio is capable of curing CL in hamsters. This effect may be due to the ability of these compounds to affect parasite survival and the ability to infect new cells.
Collapse
Affiliation(s)
- Yulieth A Upegui Zapata
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia; Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia.
| | - Winston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Fernando Torres
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Montserrat Nacher
- Centro de Investigaciones Biológicas Margarita Salas (C.S.I.C) Ramiro de Maeztu 9, 28007, Madrid, Spain
| | - Luis I Rivas
- Centro de Investigaciones Biológicas Margarita Salas (C.S.I.C) Ramiro de Maeztu 9, 28007, Madrid, Spain
| | - Camila Dos Santos Meira
- Department of Biological Sciences. University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences. University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Gustavo Escobar
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Rosendo Archbold
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Iván D Vélez
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Sara M Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
9
|
das Neves AR, Trefzger OS, Barbosa NV, Honorato AM, Carvalho DB, Moslaves IS, Kadri MCT, Yoshida NC, Kato MJ, Arruda CCP, Baroni ACM. Effect of isoxazole derivatives of tetrahydrofuran neolignans on intracellular amastigotes of Leishmania (Leishmania) amazonensis: A structure-activity relationship comparative study with triazole-neolignan-based compounds. Chem Biol Drug Des 2019; 94:2004-2012. [PMID: 31444858 DOI: 10.1111/cbdd.13609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/03/2019] [Accepted: 07/27/2019] [Indexed: 11/30/2022]
Abstract
Isoxazole analogues derived from the neolignans veraguensin, grandisin, and machilin G were previously synthesized with different substitution patterns through the bioisosterism strategy. These compounds were tested on intracellular amastigotes of Leishmania (Leishmania) amazonensis; the derivatives proved to be active against intracellular amastigotes, with IC50 values ranging from 0.4 to 25 μM. The most active analogues were 4', 14', 15', and 18', with IC50 values of 0.9, 0.4, 0.7, and 1.4 μM, respectively, showing high selectivity indexes (SI = 277.0; 625.0; 178.5 and 357.1). Overall, the isoxazole analogues did not induce nitric oxide (NO) production by infected cells; there was no evidence that NO influences the antileishmanial mechanism of action, except for compound 4'. Trimethoxy groups as substituents seemed to be critical for antileishmanial activity. The SAR study demonstrated that the isoxazole compounds were more active than 1,2,3-triazole compounds with the same substitution pattterns, demonstrating the importance of the bioisosterism strategy in drug design.
Collapse
Affiliation(s)
- Amarith R das Neves
- LASQUIM - Laboratório de Síntese e Química Medicinal, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.,Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Ozildéia S Trefzger
- LASQUIM - Laboratório de Síntese e Química Medicinal, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Natália V Barbosa
- LASQUIM - Laboratório de Síntese e Química Medicinal, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.,Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Antonio M Honorato
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Diego B Carvalho
- LASQUIM - Laboratório de Síntese e Química Medicinal, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Iluska S Moslaves
- Laboratório de Biofisiofarmacologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Mônica C T Kadri
- Laboratório de Biofisiofarmacologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Nidia C Yoshida
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande, Brazil
| | - Massuo J Kato
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Carla C P Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Adriano C M Baroni
- LASQUIM - Laboratório de Síntese e Química Medicinal, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
10
|
De Sarkar S, Sarkar D, Sarkar A, Dighal A, Staniek K, Gille L, Chatterjee M. Berberine chloride mediates its antileishmanial activity by inhibiting Leishmania mitochondria. Parasitol Res 2019; 118:335-345. [PMID: 30470927 DOI: 10.1007/s00436-018-6157-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
Abstract
Berberine chloride, a plant-derived isoquinoline alkaloid, has been demonstrated to have leishmanicidal activity, which is mediated by generation of a redox imbalance and depolarization of the mitochondrial membrane, resulting in a caspase-independent apoptotic-like cell death. However, its impact on mitochondrial function remains to be delineated and is the focus of this study. In UR6 promastigotes, berberine chloride demonstrated a dose-dependent increase in generation of reactive oxygen species and mitochondrial superoxide, depolarization of the mitochondrial membrane potential, a dose-dependent inhibition of mitochondrial complexes I-III and II-III, along with a substantial depletion of ATP, collectively suggesting inhibition of parasite mitochondria. Accordingly, the oxidative stress induced by berberine chloride resulting in an apoptotic-like cell death in Leishmania can be exploited as a potent chemotherapeutic strategy, mitochondria being a prime contributor.
Collapse
Affiliation(s)
- Sritama De Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Avijit Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Aishwarya Dighal
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B Acharya JC Bose Road, Kolkata, 700020, India.
| |
Collapse
|
11
|
Ren Y, Gallucci JC, Kinghorn D. An Intramolecular CAr-H•••O=C Hydrogen Bond and the Configuration of Rotenoids. PLANTA MEDICA 2017; 83:1194-1199. [PMID: 28427102 PMCID: PMC5617795 DOI: 10.1055/s-0043-108910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Over the past half a century, the structure and configuration of the rotenoids, a group of natural products showing multiple promising bioactivities, have been established by interpretation of their NMR and electronic circular dichroism spectra and confirmed by analysis of single-crystal X-ray diffraction data. The chemical shift of the H-6' 1H NMR resonance has been found to be an indicator of either a cis or trans C/D ring system. In the present study, four structures representing the central rings of a cis-, a trans-, a dehydro-, and an oxadehydro-rotenoid have been plotted using the Mercury program based on X-ray crystal structures reported previously, with the conformations of the C/D ring system, the local bond lengths or interatomic distances, hydrogen bond angles, and the H-6' chemical shift of these compounds presented. It is shown for the first time that a trans-fused C/D ring system of rotenoids is preferred for the formation of a potential intramolecular C6'-H6'•••O=C4 H-bond, and that such H-bonding results in the 1H NMR resonance for H-6' being shifted downfield.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Judith C. Gallucci
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
de Castro Oliveira LG, Brito LM, de Moraes Alves MM, Amorim LV, Sobrinho-Júnior EPC, de Carvalho CES, da Franca Rodrigues KA, Arcanjo DDR, das Graças Lopes Citó AM, de Amorim Carvalho FA. In VitroEffects of the Neolignan 2,3-Dihydrobenzofuran AgainstLeishmania Amazonensis. Basic Clin Pharmacol Toxicol 2016; 120:52-58. [DOI: 10.1111/bcpt.12639] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lucas Moreira Brito
- Medicinal Plants Research Center; Federal University of Piauí; Teresina PI Brazil
| | | | | | | | | | | | - Daniel Dias Rufino Arcanjo
- Medicinal Plants Research Center; Federal University of Piauí; Teresina PI Brazil
- Department of Biophysics and Physiology; Federal University of Piauí; Teresina PI Brazil
| | | | - Fernando Aécio de Amorim Carvalho
- Medicinal Plants Research Center; Federal University of Piauí; Teresina PI Brazil
- Department of Biochemistry and Pharmacology; Federal University of Piauí; Teresina PI Brazil
| |
Collapse
|
13
|
Costa EC, Cassamale TB, Carvalho DB, Bosquiroli LSS, Ojeda M, Ximenes TV, Matos MFC, Kadri MCT, Baroni ACM, Arruda CCP. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G. Molecules 2016; 21:E802. [PMID: 27331807 PMCID: PMC6273954 DOI: 10.3390/molecules21060802] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022] Open
Abstract
Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities.
Collapse
Affiliation(s)
- Eduarda C Costa
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Tatiana B Cassamale
- Laboratório de Síntese e Química Medicinal-LASQUIM, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Diego B Carvalho
- Laboratório de Síntese e Química Medicinal-LASQUIM, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Lauriane S S Bosquiroli
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Mariáh Ojeda
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Thalita V Ximenes
- Laboratório de Biofisiofarmacologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Maria F C Matos
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Mônica C T Kadri
- Laboratório de Biofisiofarmacologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Adriano C M Baroni
- Laboratório de Síntese e Química Medicinal-LASQUIM, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Carla C P Arruda
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| |
Collapse
|