1
|
Trang VM, Son NT, Luyen ND, Giang PM. Essential Oils From Chromolaena odorata (L.) R. M. King and H. Robinson Stem Barks and Leaves: Chemical Analysis, Biological Activity and In Silico Approach. Chem Biodivers 2025:e202500091. [PMID: 39853896 DOI: 10.1002/cbdv.202500091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
The current study first describes the chemical profiles of essential oils from Vietnamese Chromolaena odorata fresh stem barks and leaves. The gas chromatography-flame ionization detection/mass spectrometry (GC-FID/MS) analysis revealed that α-pinene (6.97%-38.91%), β-pinene (5.68%-11.64%), geijerene (10.60%-26.68%), germacrene D (9.33%-16.87%), and (E)-caryophyllene (5.03%-9.12%) were the major compounds. Essential oils showed strong anti-inflammation against NO (nitric oxidative) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells with IC50 values of 42.44-49.01 µg/mL. Two essential oils also exhibited cytotoxicity against four cancer cell lines, K562, HeLa, HepG2, and MCF-7, antioxidant activity to capture DPPH radicals, and antidiabetics in α-glucosidase inhibition. Both samples showed varying levels in the antimicrobial experiment, especially the leaf essential oil, which showed strong antibacterial activity against the bacterium Bacillus subtilis with a MIC value of 64 µg/mL. From the molecular docking investigation, geijerene had a higher affinity for cyclooxygenase-2 (COX-2) than the other main compounds, whereas germacrene D had the strongest binding affinity for two protein targets, COX-2, and B. subtilis FtsZ. It was discovered that the main factor stabilizing the bindings of these compounds to the target proteins was hydrophobic interactions.
Collapse
Affiliation(s)
- Vu Minh Trang
- VNU University of Education, Vietnam National University, 144 Xuan Thuy, Caugiay, Hanoi, Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Nguyen Dinh Luyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Phan Minh Giang
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoankiem, Hanoi, Vietnam
| |
Collapse
|
2
|
Elzahhar PA, Orioli R, Hassan NW, Gobbi S, Belluti F, Labib HF, El-Yazbi AF, Nassra R, Belal ASF, Bisi A. Chromone-based small molecules for multistep shutdown of arachidonate pathway: Simultaneous inhibition of COX-2, 15-LOX and mPGES-1 enzymes. Eur J Med Chem 2024; 266:116138. [PMID: 38219658 DOI: 10.1016/j.ejmech.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
As a new approach to the management of inflammatory disorders, a series of chromone-based derivatives containing a (carbamate)hydrazone moiety was designed and synthesized. The compounds were assessed for their ability to inhibit COX-1/2, 15-LOX, and mPGES-1, as a combination that should effectively impede the arachidonate pathway. Results revealed that the benzylcarbazates (2a-c) demonstrated two-digit nanomolar COX-2 inhibitory activities with reasonable selectivity indices. They also showed appreciable 15-LOX inhibition, in comparison to quercetin. Further testing of these compounds for mPGES-1 inhibition displayed promising activities. Intriguingly, compounds 2a-c were capable of suppressing edema in the formalin-induced rat paw edema assay. They exhibited an acceptable gastrointestinal safety profile regarding ulcerogenic liabilities in gross and histopathological examinations. Additionally, upon treatment with the test compounds, the expression of the anti-inflammatory cytokine IL-10 was elevated, whereas that of TNF-α, iNOS, IL-1β, and COX-2 were downregulated in LPS-challenged RAW264.7 macrophages. Docking experiments into the three enzymes showed interesting binding profiles and affinities, further substantiating their biological activities. Their in silico physicochemical and pharmacokinetic parameters were advantageous.
Collapse
Affiliation(s)
- Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Rebecca Orioli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Nayera W Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Hala F Labib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy of Science Technology and Maritime Transport, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Faculty of Pharmacy and the Research and Innovation Hub, Alamein International University, Alamein, 5060335, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Rasha Nassra
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Egypt
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
3
|
Wang Y, Li BS, Zhang ZH, Wang Z, Wan YT, Wu FW, Liu JC, Peng JX, Wang HY, Hong L. Paeonol repurposing for cancer therapy: From mechanism to clinical translation. Biomed Pharmacother 2023; 165:115277. [PMID: 37544285 DOI: 10.1016/j.biopha.2023.115277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Paeonol (PAE) is a natural phenolic monomer isolated from the root bark of Paeonia suffruticosa that has been widely used in the clinical treatment of some inflammatory-related diseases and cardiovascular diseases. Much preclinical evidence has demonstrated that PAE not only exhibits a broad spectrum of anticancer effects by inhibiting cell proliferation, invasion and migration and inducing cell apoptosis and cycle arrest through multiple molecular pathways, but also shows excellent performance in improving cancer drug sensitivity, reversing chemoresistance and reducing the toxic side effects of anticancer drugs. However, studies indicate that PAE has the characteristics of poor stability, low bioavailability and short half-life, which makes the effective dose of PAE in many cancers usually high and greatly limits its clinical translation. Fortunately, nanomaterials and derivatives are being developed to ameliorate PAE's shortcomings. This review aims to systematically cover the anticancer advances of PAE in pharmacology, pharmacokinetics, nano delivery systems and derivatives, to provide researchers with the latest and comprehensive information, and to point out the limitations of current studies and areas that need to be strengthened in future studies. We believe this work will be beneficial for further exploration and repurposing of this natural compound as a new clinical anticancer drug.
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zi-Hui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu-Ting Wan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fu-Wen Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing-Chun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jia-Xin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao-Yu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
4
|
Meng Q, Tong S, Zhao Y, Peng X, Li Z, Feng T, Liu J. New Phenolic Dimers from Plant Paeonia suffruticosa and Their Cytotoxicity and NO Production Inhibition. Molecules 2023; 28:4590. [PMID: 37375146 DOI: 10.3390/molecules28124590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The Paeonia suffruticosa, known as 'Feng Dan', has been used for thousands of years in traditional Chinese medicine. In our chemical investigation on the root bark of the plant, five new phenolic dimers, namely, paeobenzofuranones A-E (1-5), were characterized. Their structures were determined using spectroscopic analysis including 1D and 2D NMR, HRESIMS, UV, and IR, as well as ECD calculations. Compounds 2, 4, and 5 showed cytotoxicity against three human cancer cell lines, with IC50 values ranging from 6.7 to 25.1 μM. Compounds 1 and 2 showed certain inhibitory activity on NO production. To the best of our knowledge, the benzofuranone dimers and their cytotoxicity of P. suffruticosa are reported for the first time in this paper.
Collapse
Affiliation(s)
- Qianqian Meng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Medical School, Fuyang Normal University, Fuyang 236037, China
| | - Shunyao Tong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Yuqing Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhenghui Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
5
|
Gupta S, Park SE, Mozaffari S, El-Aarag B, Parang K, Tiwari RK. Design, Synthesis, and Antiproliferative Activity of Benzopyran-4-One-Isoxazole Hybrid Compounds. Molecules 2023; 28:4220. [PMID: 37241960 PMCID: PMC10224329 DOI: 10.3390/molecules28104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The biological significance of benzopyran-4-ones as cytotoxic agents against multi-drug resistant cancer cell lines and isoxazoles as anti-inflammatory agents in cellular assays prompted us to design and synthesize their hybrid compounds and explore their antiproliferative activity against a panel of six cancer cell lines and two normal cell lines. Compounds 5a-d displayed significant antiproliferative activities against all the cancer cell lines tested, and IC50 values were in the range of 5.2-22.2 μM against MDA-MB-231 cancer cells, while they were minimally cytotoxic to the HEK-293 and LLC-PK1 normal cell lines. The IC50 values of 5a-d against normal HEK-293 cells were in the range of 102.4-293.2 μM. Compound 5a was screened for kinase inhibitory activity, proteolytic human serum stability, and apoptotic activity. The compound was found inactive towards different kinases, while it completely degraded after 2 h of incubation with human serum. At 5 μM concentration, it induced apoptosis in MDA-MB-231 by 50.8%. Overall, these findings suggest that new benzopyran-4-one-isoxazole hybrid compounds, particularly 5a-d, are selective anticancer agents, potentially safe for human cells, and could be synthesized at low cost. Additionally, Compound 5a exhibits potential anticancer activity mediated via inhibition of cancer cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Shilpi Gupta
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA; (S.G.); (S.M.); (B.E.-A.)
- Department of Chemistry, Hindu College, Sonipat 131001, India
| | - Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA; (S.G.); (S.M.); (B.E.-A.)
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA; (S.G.); (S.M.); (B.E.-A.)
| | - Bishoy El-Aarag
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA; (S.G.); (S.M.); (B.E.-A.)
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA; (S.G.); (S.M.); (B.E.-A.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA; (S.G.); (S.M.); (B.E.-A.)
| |
Collapse
|
6
|
Synthesis, Characterization, and Pharmacokinetic Studies of Thiazolidine-2,4-Dione Derivatives. J CHEM-NY 2023. [DOI: 10.1155/2023/9462176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Various derivatives of thiazolidine-2,4-dione (C1–C5) were designed and synthesized by chemical reaction with 4-nitrobenzaldehyde using Knoevenagel reaction conditions which results in the reduction of nitro group to amine and further modification results in target compounds. The chemical structures of all the 2,4-thiazolidinedione derivatives have been elucidated by 1H and 13C NMR spectroscopy. These compounds were further characterized by in silico ADME (absorption, distribution, metabolism, and excretion) studies. The pharmacokinetic properties were assessed by SwissADME software. The in silico ADME (absorption, distribution, metabolism, and excretion) assessment reveals that all derivatives (C1 to C5) have 5 to 7 rotatable bonds. Lipophilicity and water solubility showed that C1, C2, and C4 are water soluble except for C3 and C5 which are moderately soluble. All the compounds have high GI absorption except C3. None of the derivatives are blood-brain barrier permeant. Drug metabolism of TZDs derivatives showed that C3 was identified as an inhibitor of CYP2C9 and C5 as an inhibitor of CYP1A2 and CYP2C19. Drug likeness properties indicate that C1 has only one violation of the Ghose rule while C3 has violations in the Ghose and Egan rules. The in silico pharmacokinetic studies revealed high GI absorption and the inability to pass blood-brain barrier which can be further assessed by in vitro and in vivo antihyperglycemic activity. This study will contribute to providing TZDs derivatives with an improved pharmacokinetic profile and decreased toxicity.
Collapse
|
7
|
A novel BH3 mimetic Bcl-2 inhibitor promotes autophagic cell death and reduces in vivo Glioblastoma tumor growth. Cell Death Dis 2022; 8:433. [PMID: 36309485 PMCID: PMC9617882 DOI: 10.1038/s41420-022-01225-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
Anti-apoptotic members of the Bcl-2 family proteins play central roles in the regulation of cell death in glioblastoma (GBM), the most malignant type of brain tumor. Despite the advances in GBM treatment, there is still an urgent need for new therapeutic approaches. Here, we report a novel 4-thiazolidinone derivative BH3 mimetic, BAU-243 that binds to Bcl-2 with a high affinity. BAU-243 effectively reduced overall GBM cell proliferation including a subpopulation of cancer-initiating cells in contrast to the selective Bcl-2 inhibitor ABT-199. While ABT-199 successfully induces apoptosis in high BCL2-expressing neuroblastoma SHSY-5Y cells, BAU-243 triggered autophagic cell death rather than apoptosis in GBM A172 cells, indicated by the upregulation of BECN1, ATG5, and MAP1LC3B expression. Lc3b-II, a potent autophagy marker, was significantly upregulated following BAU-243 treatment. Moreover, BAU-243 significantly reduced tumor growth in vivo in orthotopic brain tumor models when compared to the vehicle group, and ABT-199 treated animals. To elucidate the molecular mechanisms of action of BAU-243, we performed computational modeling simulations that were consistent with in vitro results. Our results indicate that BAU-243 activates autophagic cell death by disrupting the Beclin 1:Bcl-2 complex and may serve as a potential small molecule for treating GBM.
Collapse
|
8
|
Structure related α-glucosidase inhibitory activity and molecular docking analyses of phenolic compounds from Paeonia suffruticosa. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02830-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Patil VM, Masand N, Verma S, Masand V. Chromones: Privileged scaffold in anticancer drug discovery. Chem Biol Drug Des 2021; 98:943-953. [PMID: 34519163 DOI: 10.1111/cbdd.13951] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
In the design and discovery of anticancer drugs, various natural heterocyclic scaffolds have attracted considerable interest as privileged structures. For rational drug design, some of the natural scaffolds such as chromones have exhibited wide acceptability due to their drug-like properties. Among the approved anticancer drugs, the scaffolds with high selectivity for a small group of closely related targets are of importance. In the development of selective anticancer agents, the natural, as well as synthetic, can generate highly selective compounds toward cancer targets. The present manuscript includes more particularly the development of cancer inhibitors incorporating the chromone scaffold, with a strong emphasis on their molecular interactions in the anticancer mechanism. It also includes the structure-activity relationship studies and related examples of lead optimization.
Collapse
Affiliation(s)
- Vaishali M Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| | - Saroj Verma
- Department of Pharmaceutical Chemistry, SGT University, Gurugram, Haryana, India
| | - Vijay Masand
- Department of Chemistry, Vidya Bharati College, Amravati, Maharashtra, India
| |
Collapse
|
10
|
Vellasamy S, Murugan D, Abas R, Alias A, Seng WY, Woon CK. Biological Activities of Paeonol in Cardiovascular Diseases: A Review. Molecules 2021; 26:4976. [PMID: 34443563 PMCID: PMC8400614 DOI: 10.3390/molecules26164976] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices.
Collapse
Affiliation(s)
- Shalini Vellasamy
- Department of Microbiology and Parasitology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarum 42610, Selangor, Malaysia;
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Aspalilah Alias
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
- Fakultas Kedokteran Gigi, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Wu Yuan Seng
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
- Department of Biological Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
11
|
Hafez DE, Hafez E, Eddiasty I, Shih SP, Chien LC, Hong YJ, Lin HY, Keeton AB, Piazza GA, Abdel-Halim M, Abadi AH. Novel thiazolidine derivatives as potent selective pro-apoptotic agents. Bioorg Chem 2021; 114:105143. [PMID: 34328854 DOI: 10.1016/j.bioorg.2021.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/12/2022]
Abstract
A series of 2-arylthiazolidine-4-carboxylic acid amide derivatives were synthesized and their cytotoxic activity against three cancer cell lines (PC-3, SKOV3 and MDA-MB231) was evaluated. Various structural modifications were tried including modifications of the length of the amide chain and modifications of the 2-aryl part using disubstituted phenyl and thiophene derivatives. The structure activity relationship was evaluated based on the in vitro biological evaluation against the above mentioned three cancer cell lines. The most selective compounds towards cancer cells were further evaluated against DLD-1, NCI-H520, Du145, MCF-7 and NCI-N87 cancer cells. The dodecyl amide having the 4-bromothienyl as the 2-aryl, compound 2e, exhibited the highest selectivity for cancer cells vs non-tumor cells. Mechanistic studies of the anticancer effect of compound 2e in prostate cancer PC-3 and colorectal cancer DLD-1 cells revealed that 2e could prevent the cell cycle in the G0/G1 phase by up-regulating the expression of p21 and reducing the expression of CDK2 and cyclin E. It increased the pro-apoptotic protein Bax and cleaved caspase 3, and down-regulated the expression of anti-apoptotic protein Bcl-2 to induce apoptosis. In addition, 2e also downregulated AKT, N-cadherin, and vimentin proteins expression giving indication that 2e inhibit the PI3K/AKT pathway to regulate cell cycle arrest and induce apoptosis, and can regulate the expression of epithelial-mesenchymal transition-related proteins.
Collapse
Affiliation(s)
- Donia E Hafez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Eman Hafez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Islam Eddiasty
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University (NSYSU), 70 Lien-Hai Road, Kaohsiung 80424, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Leng-Chiang Chien
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Yi-Jia Hong
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Hung-Yu Lin
- School of Medicine, College of Medicine, I-SHOU University, Division of Urology, Department of Surgery, E-Da Cancer & E-Da Hospital, Kaohsiung 824, Taiwan.
| | - Adam B Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA
| | - Gary A Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|
12
|
Wang J, Wu G, Chu H, Wu Z, Sun J. Paeonol Derivatives and Pharmacological Activities: A Review of Recent Progress. Mini Rev Med Chem 2020; 20:466-482. [PMID: 31644406 DOI: 10.2174/1389557519666191015204223] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Paeonol, 2-hydroxy-4-methoxy acetophenone, is one of the main active ingredients of traditional Chinese medicine such as Cynanchum paniculatum, Paeonia suffruticosa Andr and Paeonia lactiflora Pall. Modern medical research has shown that paeonol has a wide range of pharmacological activities. In recent years, a large number of studies have been carried out on the structure modification of paeonol and the mechanism of action of paeonol derivatives has been studied. Some paeonol derivatives exhibit good pharmacological activities in terms of antibacterial, anti-inflammatory, antipyretic analgesic, antioxidant and other pharmacological effects. Herein, the research progress on paeonol derivatives and their pharmacological activities were systematically reviewed.
Collapse
Affiliation(s)
- Jilei Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Guiying Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Haiping Chu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Zhongyu Wu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Jingyong Sun
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
13
|
Kucerova-Chlupacova M, Halakova D, Majekova M, Treml J, Stefek M, Soltesova Prnova M. (4-Oxo-2-thioxothiazolidin-3-yl)acetic acids as potent and selective aldose reductase inhibitors. Chem Biol Interact 2020; 332:109286. [DOI: 10.1016/j.cbi.2020.109286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
|
14
|
Hsu MH, Hsieh CY, Kapoor M, Chang JH, Chu HL, Cheng TM, Hsu KC, Lin TE, Tsai FY, Horng JC. Leucettamine B analogs and their carborane derivative as potential anti-cancer agents: Design, synthesis, and biological evaluation. Bioorg Chem 2020; 98:103729. [DOI: 10.1016/j.bioorg.2020.103729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
|
15
|
Sahiba N, Sethiya A, Soni J, Agarwal DK, Agarwal S. Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Top Curr Chem (Cham) 2020; 378:34. [PMID: 32206929 PMCID: PMC7101601 DOI: 10.1007/s41061-020-0298-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
Abstract
In past decades, interdisciplinary research has been of great interest for scholars. Thiazolidine motifs behave as a bridge between organic synthesis and medicinal chemistry and compel researchers to explore new drug candidates. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. The presence of sulfur enhances their pharmacological properties, and, therefore, they are used as vehicles in the synthesis of valuable organic combinations. They show varied biological properties viz. anticancer, anticonvulsant, antimicrobial, anti-inflammatory, neuroprotective, antioxidant activity and so on. This diversity in the biological response makes it a highly prized moiety. Based on literature studies, various synthetic approaches like multicomponent reaction, click reaction, nano-catalysis and green chemistry have been employed to improve their selectivity, purity, product yield and pharmacokinetic activity. In this review article, we have summarized systematic approaches for the synthesis of thiazolidine and its derivatives, along with their pharmacological activity, including advantages of green synthesis, atom economy, cleaner reaction profile and catalyst recovery which will help scientists to probe and stimulate the study of these scaffolds.
Collapse
Affiliation(s)
- Nusrat Sahiba
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Jay Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Dinesh K. Agarwal
- Department of Pharmacy, B. N. University, MLSU, Udaipur, 313001 India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| |
Collapse
|
16
|
Adki KM, Kulkarni YA. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci 2020; 250:117544. [PMID: 32179072 DOI: 10.1016/j.lfs.2020.117544] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Paeonol is a bioactive phenol present in Dioscorea japonica, Paeonia suffruticosa and Paeonia lactiflora. It is reported for various pharmacological activities. AIM To review chemistry, pharmacokinetics, pharmacological activities as well as various formulations of paeonol. MATERIALS AND METHODS A literature search was done using different search terms for paeonol by using different scientific databases like PubMed, Scopus and ProQuest. Scientific papers published during the period 1969 to 2019 were comprehensively reviewed. KEY FINDINGS Researchers have synthesized methoxy, ethoxy, piperazine, chromonylthiazolidine, phenol-phenylsulfonyl, alkyl ether, aminothiazole, tryptamine hybrids and paeononlsilatie derivatives to enhance the stability of paeonol. These derivatives were synthesized and evaluated for in vitro series of biological activities like anti-inflammatory, tyrosinase inhibitory, neuroprotective, anticancer and antiviral activity. Regardless of valuable therapeutic potential, the clinical use of paeonol is restricted due to poor water solubility, low oral bioavailability, low stability and high volatility at room temperature. To enhance the bioavailability of paeonol various formulations are prepared and evaluated for its activity. Paeonol formulations can be categorized as conventional-tablets, topical gel and hydrogel; polymeric delivery system-microparticles, microsponges, dendrimers, nanocapsules, polymeric nanoparticles, nanospheres; lipid-based delivery systems-microemulsion, self-micro-emulsifying drug delivery, liposome, transethosomes, ethosomes, niosomes, proniosomes, lipid-based nanoparticles and nanoemulsion of paeonol. SIGNIFICANCE Paeonol has a potential to be developed as a techno-commercial product with respect to its multi-faceted pharmacological properties. Even though in vitro and in vivo studies have been reported the important activities of paeonol, its commercial utilization requires extensive safety and efficacy data.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India.
| |
Collapse
|
17
|
Shcherbakov KV, Artemyeva MA, Burgart YV, Evstigneeva NP, Gerasimova NA, Zilberberg NV, Kungurov NV, Saloutin VI, Chupakhin ON. Transformations of 3-acyl-4H-polyfluorochromen-4-ones under the action of amino acids and biogenic amines. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Paeonol: pharmacological effects and mechanisms of action. Int Immunopharmacol 2019; 72:413-421. [PMID: 31030097 DOI: 10.1016/j.intimp.2019.04.033] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Paeonia suffruticosa possesses various medicinal benefits and has been used extensively in traditional oriental medicine for thousands of years. Paeonol is the main component isolated from the root bark of Paeonia suffruticosa. The pharmacological effects of Paeonia suffruticosa are mostly attributed to paeonol. Paeonol injection has been successfully applied in China for nearly 50 years for inflammation/pain-related indications. Currently, the dosage forms of paeonol approved by China Food and Drug Administration include tablet, injection, and external preparations such as ointment and adhesive plaster. So far, the clinical applications of paeonol are mainly focusing on the anti-inflammatory activity. Studies of other pharmacological activities of paeonol are developing rapidly, and which may play an important role in the future. Besides, substantial mechanisms of pharmacological action of paeonol have been clarified in recent years. In this review, we summarize the pharmacological effects anti-inflammatory, neuroprotective, anti-tumor, anti-cardiovascular diseases and associated mechanisms of action of paeonol up to date.
Collapse
|
19
|
Asghari S, Pourshab M, Mohseni M. Synthesis, characterization, and evaluation of antioxidant and antibacterial activities of novel indole-hydrazono thiazolidinones. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2292-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Nguyen Tien C, Nguyen Van T, Le Duc G, Vu Quoc M, Vu Quoc T, Pham Chien T, Nguyen Huy H, Dang Thi Tuyet A, Nguyen Van T, Van Meervelt L. Synthesis, structure and in vitro cytotoxicity testing of some 1,3,4-oxadiazoline derivatives from 2-hydroxy-5-iodobenzoic acid. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:839-846. [PMID: 29973423 DOI: 10.1107/s2053229618008719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 11/10/2022]
Abstract
The syntheses of nine new 5-iodosalicylic acid-based 1,3,4-oxadiazoline derivatives starting from methyl salicylate are described. These compounds are 2-[4-acetyl-5-methyl-5-(3-nitrophenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6a), 2-[4-acetyl-5-methyl-5-(4-nitrophenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6b), 2-(4-acetyl-5-methyl-5-phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-4-iodophenyl acetate, C19H17IN2O4 (6c), 2-[4-acetyl-5-(4-fluorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate, C19H16FIN2O4 (6d), 2-[4-acetyl-5-(4-chlorophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate, C19H16ClIN2O4 (6e), 2-[4-acetyl-5-(3-bromophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6f), 2-[4-acetyl-5-(4-bromophenyl)-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6g), 2-[4-acetyl-5-methyl-5-(4-methylphenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6h) and 2-[5-(4-acetamidophenyl)-4-acetyl-5-methyl-4,5-dihydro-1,3,4-oxadiazol-2-yl]-4-iodophenyl acetate (6i). The compounds were characterized by mass, 1H NMR and 13C NMR spectroscopies. Single-crystal X-ray diffraction studies were also carried out for 6c, 6d and 6e. Compounds 6c and 6d are isomorphous, with the 1,3,4-oxadiazoline ring having an envelope conformation, where the disubstituted C atom is the flap. The packing is determined by C-H...O, C-H...π and I...π interactions. For 6e, the 1,3,4-oxadiazoline ring is almost planar. In the packing, Cl...π interactions are observed, while the I atom is not involved in short interactions. Compounds 6d, 6e, 6f and 6h show good inhibiting abilities on the human cancer cell lines KB and Hep-G2, with IC50 values of 0.9-4.5 µM.
Collapse
Affiliation(s)
- Cong Nguyen Tien
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Thin Nguyen Van
- School of Natural Sciences Education, Vinh University, 182 Le Duan St., Vinh City, Vietnam
| | - Giang Le Duc
- School of Natural Sciences Education, Vinh University, 182 Le Duan St., Vinh City, Vietnam
| | - Manh Vu Quoc
- Faculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam
| | - Trung Vu Quoc
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Thang Pham Chien
- Department of Inorganic Chemistry, VNU University of Science, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Hung Nguyen Huy
- Department of Inorganic Chemistry, VNU University of Science, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Anh Dang Thi Tuyet
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Tuyen Nguyen Van
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
21
|
Sucheta, Tahlan S, Verma PK. Biological potential of thiazolidinedione derivatives of synthetic origin. Chem Cent J 2017; 11:130. [PMID: 29222671 PMCID: PMC5722786 DOI: 10.1186/s13065-017-0357-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
Thiazolidinediones are sulfur containing pentacyclic compounds that are widely found throughout nature in various forms. Thiazolidinedione nucleus is present in numerous biological compounds, e.g., anti-malarial, antimicrobial, anti-mycobacterium, anticonvulsant, antiviral, anticancer, anti-inflammatory, antioxidant, anti-HIV (human immunodeficiency virus) and antitubercular agent. However, owing to the swift development of new molecules containing this nucleus, many research reports have been generated in a brief span of time. Therefore seems to be a requirement to collect recent information in order to understand the current status of the thiazolidinedione nucleus in medicinal chemistry research, focusing in particular on the numerous attempts to synthesize and investigate new structural prototypes with more effective antidiabetic, antimicrobial, antioxidant, anti-inflammatory, anticancer and antitubercular activity.![]()
Collapse
Affiliation(s)
- Sucheta
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sumit Tahlan
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
22
|
Lyu ZK, Li CL, Jin Y, Liu YZ, Zhang X, Zhang F, Ning LN, Liang ES, Ma M, Gao W, Zhang MX, Liu DS. Paeonol exerts potential activities to inhibit the growth, migration and invasion of human gastric cancer BGC823 cells via downregulating MMP‑2 and MMP‑9. Mol Med Rep 2017; 16:7513-7519. [PMID: 28944890 PMCID: PMC5865884 DOI: 10.3892/mmr.2017.7576] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Paeonol (Pae) is an herbal extract that has attracted extensive attention for its anti-cancer effects demonstrated by a number of studies, which have predominantly demonstrated inhibition of cell proliferation and induction of apoptosis. The influence of Pae on cancer cell metastasis has been less widely reported. The present study aimed to investigate the under-reported effects of Pae on the growth, invasion and migration of poorly differentiated BGC823 gastric cancer cells with strong invasive and metastatic abilities. The anti-proliferative and pro-apoptotic effects of Pae on BGC823 cells were verified by Cell Counting kit-8 and Annexin V-fluorescein isothiocyanate/propidium iodide assays. Cell scratch-wound healing and Transwell methods were applied, and it was demonstrated that Pae could exert inhibitory activities on the invasion and migration of BGC823 cells. Furthermore, it was indicated by western blot analysis that Pae could downregulate the protein expression levels of matrix metalloproteinase (MMP)-2 and −9 in a concentration-dependent manner, which may support a novel potential mechanism accounting for its anti-cancer effects on gastric cancer.
Collapse
Affiliation(s)
- Zhong-Kuan Lyu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chang-Ling Li
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yan Jin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yu-Zhao Liu
- Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Xi Zhang
- Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Fang Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lu-Ning Ning
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Er-Shun Liang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Min Ma
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Gao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ming-Xiang Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - De-Shan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
23
|
Reis J, Gaspar A, Milhazes N, Borges F. Chromone as a Privileged Scaffold in Drug Discovery: Recent Advances. J Med Chem 2017; 60:7941-7957. [PMID: 28537720 DOI: 10.1021/acs.jmedchem.6b01720] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of privileged structures in drug discovery has proven to be an effective strategy, allowing the generation of innovative hits/leads and successful optimization processes. Chromone is recognized as a privileged structure and a useful template for the design of novel compounds with potential pharmacological interest, particularly in the field of neurodegenerative, inflammatory, and infectious diseases as well as diabetes and cancer. This perspective provides the reader with an update of an earlier article entitled "Chromone: A Valid Scaffold in Medicinal Chemistry" ( Chem. Rev. 2014 , 114 , 4960 - 4992 ) and is mainly focused on chromones of biological interest, including those isolated from natural sources. Moreover, as drug repurposing is becoming an attractive drug discovery approach, recent repurposing studies of chromone-based drugs are also reported.
Collapse
Affiliation(s)
- Joana Reis
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| | - Alexandra Gaspar
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| | - Nuno Milhazes
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , Porto 4169-007, Portugal
| |
Collapse
|
24
|
Chernov NM, Klyukin AS, Ksenofontova GV, Shchegolev AE, Yakovlev IP. Synthesis of 4-hydroxy-5-methyl-2-[2-(4-oxo-4H-chromen-3-yl)ethenyl]-6H-1,3-oxazin-6-ones and their reaction with hydrazine. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217050103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Flefel EM, El-Sayed WA, Mohamed AM, El-Sofany WI, Awad HM. Synthesis and Anticancer Activity of New 1-Thia-4-azaspiro[4.5]decane, Their Derived Thiazolopyrimidine and 1,3,4-Thiadiazole Thioglycosides. Molecules 2017; 22:molecules22010170. [PMID: 28117699 PMCID: PMC6155784 DOI: 10.3390/molecules22010170] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
New 1-thia-azaspiro[4.5]decane derivatives, their derived thiazolopyrimidine and 1,3,4-thiadiazole compounds were synthesized. The thioglycoside derivatives of the synthesized (1,3,4-thiadiazolyl)thiaazaspiro[4.5]decane and thiazolopyrimidinethione compounds were synthesized by glycosylation reactions using acetylated glycosyl bromides. The anticancer activity of synthesized compounds was studied against the cell culture of HepG-2 (human liver hepatocellular carcinoma), PC-3 (human prostate adenocarcinoma) and HCT116 (human colorectal carcinoma) cell lines and a number of compounds showed moderate to high inhibition activities.
Collapse
Affiliation(s)
- Eman M Flefel
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Monawarah 1343, Saudi Arabia.
- Photochemistry Department, National Research Centre, Dokki 12622, Giza, Egypt.
| | - Wael A El-Sayed
- Photochemistry Department, National Research Centre, Dokki 12622, Giza, Egypt.
| | - Ashraf M Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki 12622, Giza, Egypt.
- Chemistry Department, College of Science, Aljouf University, Sakaka, Al-Jouf 72341, Saudi Arabia.
| | - Walaa I El-Sofany
- Photochemistry Department, National Research Centre, Dokki 12622, Giza, Egypt.
| | - Hanem M Awad
- Department of Tanning Materials and Leather Technology, National Research Centre, Dokki 12622, Giza, Egypt.
| |
Collapse
|
26
|
|