1
|
Attia Y, Hakeem A, Samir R, Mohammed A, Elsayed A, Khallaf A, Essam E, Amin H, Abdullah S, Hikmat S, Hossam T, Mohamed Z, Aboelmagd Z, Hammam O. Harnessing adrenergic blockade in stress-promoted TNBC in vitro and solid tumor in vivo: disrupting HIF-1α and GSK-3β/β-catenin driven resistance to doxorubicin. Front Pharmacol 2024; 15:1362675. [PMID: 38962320 PMCID: PMC11220203 DOI: 10.3389/fphar.2024.1362675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/30/2024] [Indexed: 07/05/2024] Open
Abstract
Sympathetic activation triggered by chronic stress afflicting cancer survivors is an emerging modulator of tumorigenesis. Adrenergic blockade was previously associated with improving response to doxorubicin (DOX) in triple-negative breast cancer (TNBC), yet the precise underlying mechanisms remain obscure. The resilience of cancer stem cells (CSCs) during chemotherapy fosters resistance and relapse. Hypoxia-inducible factor-1α (HIF-1α) and β-catenin are intertwined transcriptional factors that enrich CSCs and evidence suggests that their expression could be modulated by systemic adrenergic signals. Herein, we aimed to explore the impact of adrenoreceptor blockade using carvedilol (CAR) on DOX and its potential to modulate CSCs overcoming chemoresistance. To achieve this aim, in vitro studies were conducted using adrenaline-preincubated MDA-MB-231 cells and in vivo studies using a chronic restraint stress-promoted solid tumor mouse model. Results revealed that adrenaline increased TNBC proliferation and induced a phenotypic switch reminiscent of CSCs, as evidenced by enhanced mammosphere formation. These results paralleled an increase in aldehyde dehydrogenase-1 (ALDH-1) and Nanog expression levels as well as HIF-1α and β-catenin upsurge. In vivo, larger tumor volumes were observed in mice under chronic stress compared to their unstressed counterparts. Adrenergic blockade using CAR, however, enhanced the impact DOX had on halting TNBC cell proliferation and tumor growth via enhanced apoptosis. CAR also curbed HIF-1α and β-catenin tumor levels subsequently suppressing ALDH-1 and SOX2. Our study unveils a central role for HIF-1α linking stress-induced sympathetic activation fueling CSC enrichment via the β-catenin pathway. It also highlights novel insights into CAR's capacity in reversing DOX chemoresistance in TNBC.
Collapse
Affiliation(s)
- Yasmeen Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Andrew Hakeem
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Rawda Samir
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Aya Mohammed
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | | | - Alaa Khallaf
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Eman Essam
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Hossameldeen Amin
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Sarah Abdullah
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Salwan Hikmat
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Tarek Hossam
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Ziad Mohamed
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Ziad Aboelmagd
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
2
|
Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. J Biomed Sci 2024; 31:7. [PMID: 38221607 PMCID: PMC10789053 DOI: 10.1186/s12929-024-00994-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
Three-dimensional (3D) cell cultures have emerged as valuable tools in cancer research, offering significant advantages over traditional two-dimensional (2D) cell culture systems. In 3D cell cultures, cancer cells are grown in an environment that more closely mimics the 3D architecture and complexity of in vivo tumors. This approach has revolutionized cancer research by providing a more accurate representation of the tumor microenvironment (TME) and enabling the study of tumor behavior and response to therapies in a more physiologically relevant context. One of the key benefits of 3D cell culture in cancer research is the ability to recapitulate the complex interactions between cancer cells and their surrounding stroma. Tumors consist not only of cancer cells but also various other cell types, including stromal cells, immune cells, and blood vessels. These models bridge traditional 2D cell cultures and animal models, offering a cost-effective, scalable, and ethical alternative for preclinical research. As the field advances, 3D cell cultures are poised to play a pivotal role in understanding cancer biology and accelerating the development of effective anticancer therapies. This review article highlights the key advantages of 3D cell cultures, progress in the most common scaffold-based culturing techniques, pertinent literature on their applications in cancer research, and the ongoing challenges.
Collapse
Affiliation(s)
- Waad H Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates.
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| |
Collapse
|
3
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng 2022; 8:4673-4696. [PMID: 36194142 DOI: 10.1021/acsbiomaterials.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer has recently been the second leading cause of death worldwide, trailing only cardiovascular disease. Cancer stem cells (CSCs), represented as tumor-initiating cells (TICs), are mainly liable for chemoresistance and disease relapse due to their self-renewal capability and differentiating capacity into different types of tumor cells. The intricate molecular mechanism is necessary to elucidate CSC's chemoresistance properties and cancer recurrence. Establishing efficient strategies for CSC maintenance and enrichment is essential to elucidate the mechanisms and properties of CSCs and CSC-related therapeutic measures. Current approaches are insufficient to mimic the in vivo chemical and physical conditions for the maintenance and growth of CSC and yield unreliable research results. Biomaterials are now widely used for simulating the bone marrow microenvironment. Biomaterial-based three-dimensional (3D) approaches for the enrichment of CSC provide an excellent promise for future drug discovery and elucidation of molecular mechanisms. In the future, the biomaterial-based model will contribute to a more operative and predictive CSC model for cancer therapy. Design strategies for materials, physicochemical cues, and morphology will offer a new direction for future modification and new methods for studying the CSC microenvironment and its chemoresistance property. This review highlights the critical roles of the microenvironmental cues that regulate CSC function and endow them with drug resistance properties. This review also explores the latest advancement and challenges in biomaterial-based scaffold structure for therapeutic approaches against CSC chemoresistance. Since the recent entry of extracellular vesicles (EVs), cell-derived nanostructures, have opened new avenues of investigation into this field, which, together with other more conventionally studied signaling pathways, play an important role in cell-to-cell communication. Thus, this review further explores the subject of EVs in-depth. This review also discusses possible future biomaterial and biomaterial-EV-based models that could be used to study the tumor microenvironment (TME) and will provide possible therapeutic approaches. Finally, this review concludes with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| | - Madhurima Das
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| |
Collapse
|
5
|
Entezari M, Mozafari M, Bakhtiyari M, Moradi F, Bagher Z, Soleimani M. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth. J Biomed Mater Res A 2022; 110:1134-1146. [PMID: 35075781 DOI: 10.1002/jbm.a.37361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
Abstract
Implantation of a suitable nerve guide conduit (NGC) seeded with sufficient Schwann cells (SCs) is required to improve peripheral nerve regeneration efficiently. Given the limitations of isolating and culturing SCs, using various sources of stem cells, including mesenchymal stem cells (MSCs) obtained from nasal olfactory mucosa, can be desirable. Olfactory ecto-MSCs (OE-MSCs) are a new population of neural crest-derived stem cells that can proliferate and differentiate into SCs and can be considered a promising autologous alternative to produce SCs. Regardless, a biomimetic physicochemical microenvironment in NGC such as electroconductive substrate can affect the fate of transplanted stem cells, including differentiation toward SCs and nerve regeneration. Therefore, in this study, the effect of 3D printed polycaprolactone (PCL)/polypyrrole (PPy) conductive scaffolds on differentiation of human OE-MSCS into functional SC-like phenotypes was investigated. Biological evaluation of 3D printed scaffolds was examined by in vitro culturing the OE-MSCs on samples surfaces, and conductivity showed no effect on increased cell attachment, proliferation rate, viability, and distribution. In contrast, immunocytochemical staining and real-time polymerase chain reaction analysis indicated that 3D structures coated with PPy could provide a favorable microenvironment for OE-MSCs differentiation. In addition, it was found that differentiated OE-MSCs within PCL/PPy could secrete the highest amounts of nerve growth factor and brain-derived neurotrophic factor neurotrophic factors compared to pure PCL and 2D culture. After co-culturing with PC12 cells, a significant increase in neurite outgrowth on PCL/PPy conductive scaffold seeded with differentiated OE-MSCs. These findings indicated that 3D printed PCL/PPy conductive scaffold could support differentiation of OE-MSCs into SC-like phenotypes to promote neurite outgrowth, suggesting their potential for neural tissue engineering applications.
Collapse
Affiliation(s)
- Maedeh Entezari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhtiyari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Li W, Zhang X, Nan Y, Jia L, Sun J, Zhang L, Wang Y. Hyaluronidase and pH Dual-Responsive Nanoparticles for Targeted Breast Cancer Stem Cells. Front Oncol 2022; 11:760423. [PMID: 35004281 PMCID: PMC8739758 DOI: 10.3389/fonc.2021.760423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
pH-responsive and CD44 receptor-mediated targeted nanoparticles for eliminating cancer stem cells (CSCs) were developed based on complexes of PEG-poly(β-amino ester) (PEG-PBAE) micelles (PPM) coated with hyaluronic acid (HA) (HA-coated PPM complex, or HPPMc). Thioridazine (Thz) was loaded into HPPMc with a decent drug loading content. The release results of the drug in vitro showed that Thz was released from the HPPMc, which was stimulated by both the acidic pH and specific enzymes. Cytotoxicity studies on mammospheres (MS) revealed that the toxicity potential of Thz-loaded HPPMc (Thz–HPPMc) at pH 5.5 was better than drug solutions. Compared with that at pH 7.4, a higher cellular uptake of a coumarin-6 (C6)-labeled complex at pH 5.5 was observed, which demonstrated that complexes were efficiently taken up in MS. Meanwhile, free HA competitively inhibited the cellular uptake of HPPMc, which revealed that the uptake mechanism was CD44 receptor-mediated endocytosis. Within the acidic endolysosomal environment, the protonation of PBAE facilitated the escape of the complex from the lysosome and releases the drug. The results of in vivo distribution studies and tumor suppression experiments showed that HPMMc could stay in the tumor site of BALB/c nude mice for a longer period of time, and Thz–HPPMc could significantly improve the tumor-suppressing effect. All these results demonstrated the great potential of the multifunctional nanoparticle system for eliminating CSCs.
Collapse
Affiliation(s)
- Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Jia
- Department of Pharmacy, Heze Medical College, Heze, China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin, China
| | - Lina Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Svanström A, Rosendahl J, Salerno S, Leiva MC, Gregersson P, Berglin M, Bogestål Y, Lausmaa J, Oko A, Chinga-Carrasco G, Petronis S, Standoft S, Ståhlberg A, Håkansson J, Landberg G. Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery. Biomed Mater 2021; 16. [PMID: 34030145 DOI: 10.1088/1748-605x/ac0451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
The cancer microenvironment influences tumor progression and metastasis and is pivotal to consider when designingin vivo-like cancer models. Current preclinical testing platforms for cancer drug development are mainly limited to 2D cell culture systems that poorly mimic physiological environments and traditional, low throughput animal models. The aim of this work was to produce a tunable testing platform based on 3D printed scaffolds (3DPS) with a simple geometry that, by extracellular components and response of breast cancer reporter cells, mimics patient-derived scaffolds (PDS) of breast cancer. Here, the biocompatible polysaccharide alginate was used as base material to generate scaffolds consisting of a 3D grid containing periostin and hydroxyapatite. Breast cancer cell lines (MCF7 and MDA-MB-231) produced similar phenotypes and gene expression levels of cancer stem cell, epithelial-mesenchymal transition, differentiation and proliferation markers when cultured on 3DPS and PDS, contrasting conventional 2D cultures. Importantly, cells cultured on 3DPS and PDS showed scaffold-specific responses to cytotoxic drugs (doxorubicin and 5-fluorouracil) that were different from 2D cultured cells. In conclusion, the data presented support the use of a tunable alginate-based 3DPS as a tumor model in breast cancer drug discovery.
Collapse
Affiliation(s)
- Andreas Svanström
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden
| | - Jennifer Rosendahl
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Simona Salerno
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden
| | - Maria Carmen Leiva
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden
| | - Pernilla Gregersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden
| | - Mattias Berglin
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Yalda Bogestål
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Jukka Lausmaa
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Asaf Oko
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | | | - Sarunas Petronis
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Simon Standoft
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, SE-41390 Gothenburg, Sweden
| | - Joakim Håkansson
- Division Material and Production, Department of Chemistry, Biomaterials and Textile, Unit for Biological function, RISE Research Institutes of Sweden, Borås SE-50115, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, PO Box 440, SE-40530 Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, SE-41390 Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden
| |
Collapse
|
8
|
Sharifi M, Bai Q, Babadaei MMN, Chowdhury F, Hassan M, Taghizadeh A, Derakhshankhah H, Khan S, Hasan A, Falahati M. 3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy. J Control Release 2021; 333:91-106. [PMID: 33774120 DOI: 10.1016/j.jconrel.2021.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
The bioprinting technique with specialized tissue production allows the study of biological, physiological, and behavioral changes of cancerous and non-cancerous tissues in response to pharmacological compounds in personalized medicine. To this end, to evaluate the efficacy of anticancer drugs before entering the clinical setting, tissue engineered 3D scaffolds containing breast cancer and derived from the especially patient, similar to the original tissue architecture, can potentially be used. Despite recent advances in the manufacturing of 3D bioprinted breast cancer tissue (BCT), many studies still suffer from reproducibility primarily because of the uncertainty of the materials used in the scaffolds and lack of printing methods. In this review, we present an overview of the breast cancer environment to optimize personalized treatment by examining and identifying the physiological and biological factors that mimic BCT. We also surveyed the materials and techniques related to 3D bioprinting, i.e, 3D bioprinting systems, current strategies for fabrication of 3D bioprinting tissues, cell adhesion and migration in 3D bioprinted BCT, and 3D bioprinted breast cancer metastasis models. Finally, we emphasized on the prospective future applications of 3D bioprinted cancer models for rapid and accurate drug screening in breast cancer.
Collapse
Affiliation(s)
- Majid Sharifi
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farhan Chowdhury
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Mahbub Hassan
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia
| | - Akbar Taghizadeh
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Suliman Khan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Luo C, Ding Z, Tu Y, Tan J, Luo Q, Song G. Biomaterial-based platforms for cancer stem cell enrichment and study. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0420. [PMID: 33738994 PMCID: PMC8185859 DOI: 10.20892/j.issn.2095-3941.2020.0420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are a relatively rare subpopulation of tumor cell with self-renewal and tumorigenesis capabilities. CSCs are associated with cancer recurrence, progression, and chemoradiotherapy resistance. Establishing a reliable platform for CSC enrichment and study is a prerequisite for understanding the characteristics of CSCs and discovering CSC-related therapeutic strategies. Certain strategies for CSC enrichment have been used in laboratory, particularly fluorescence-activated cell sorting (FACS) and mammosphere culture. However, these methods fail to recapitulate the in vivo chemical and physical conditions in tumors, thus potentially decreasing the malignancy of CSCs in culture and yielding unreliable research results. Accumulating research suggests the promise of a biomaterial-based three-dimensional (3D) strategy for CSC enrichment and study. This strategy has an advantage over conventional methods in simulating the tumor microenvironment, thus providing a more effective and predictive model for CSC laboratory research. In this review, we first briefly discuss the conventional methods for CSC enrichment and study. We then summarize the latest advances and challenges in biomaterial-based 3D CSC platforms. Design strategies for materials, morphology, and chemical and physical cues are highlighted to provide direction for the future construction of platforms for CSC enrichment and study.
Collapse
Affiliation(s)
- Chunhua Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zhongjie Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yun Tu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jiao Tan
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Prieto EI, Mojares EBA, Cortez JJM, Vasquez MR. Electrospun nanofiber scaffolds for the propagation and analysis of breast cancer stem cells in vitro. Biomed Mater 2021; 16:035004. [PMID: 33634797 DOI: 10.1088/1748-605x/abc3dd] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite advances in cancer treatment, breast cancer remains the second foremost cause of cancer mortality among women, with a high rate of relapse after initial treatment success. A subpopulation of highly malignant cancer cells, known as cancer stem cells (CSCs), is suspected to be linked to metastasis and relapse. Targeting of CSCs may therefore provide a means of addressing cancer-related mortality. However, due to their low population in vivo and a lack of proper culture platform for their propagation, much of the CSC biology remains unknown. Since maintenance of CSCs is heavily influenced by the tumor microenvironment, this study developed a 3D culture platform that mimics the metastatic tumor extracellular matrix (ECM) to effectively increase CSC population in vitro and allow CSC analysis. Through electrospinning, nanofibers that were aligned, porous, and collagen-coated were fabricated from polycaprolactone to recreate the metastatic tumor ECM assemblage. Breast cancer cells seeded onto the nanofiber scaffolds exhibited gross morphology and cytoskeletal phenotype similar to invasive cancer cells. Moreover, the population of breast cancer stem cells increased in nanofiber scaffolds. Analysis of breast cancer cells grown on the nanofiber scaffolds demonstrated an upregulation of mesenchymal markers and an increase in cell invasiveness suggesting the cells have undergone epithelial-mesenchymal transition. These results indicate that the fabricated nanofiber scaffolds effectively mimicked the tumor microenvironment that maintains the cancer stem cell population, offering a platform to enrich and analyze CSCs in vitro.
Collapse
Affiliation(s)
- E I Prieto
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - E B A Mojares
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - J J M Cortez
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - M R Vasquez
- Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
11
|
Chhetri A, Rispoli JV, Lelièvre SA. 3D Cell Culture for the Study of Microenvironment-Mediated Mechanostimuli to the Cell Nucleus: An Important Step for Cancer Research. Front Mol Biosci 2021; 8:628386. [PMID: 33644116 PMCID: PMC7902798 DOI: 10.3389/fmolb.2021.628386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery that the stiffness of the tumor microenvironment (TME) changes during cancer progression motivated the development of cell culture involving extracellular mechanostimuli, with the intent of identifying mechanotransduction mechanisms that influence cell phenotypes. Collagen I is a main extracellular matrix (ECM) component used to study mechanotransduction in three-dimensional (3D) cell culture. There are also models with interstitial fluid stress that have been mostly focusing on the migration of invasive cells. We argue that a major step for the culture of tumors is to integrate increased ECM stiffness and fluid movement characteristic of the TME. Mechanotransduction is based on the principles of tensegrity and dynamic reciprocity, which requires measuring not only biochemical changes, but also physical changes in cytoplasmic and nuclear compartments. Most techniques available for cellular rheology were developed for a 2D, flat cell culture world, hence hampering studies requiring proper cellular architecture that, itself, depends on 3D tissue organization. New and adapted measuring techniques for 3D cell culture will be worthwhile to study the apparent increase in physical plasticity of cancer cells with disease progression. Finally, evidence of the physical heterogeneity of the TME, in terms of ECM composition and stiffness and of fluid flow, calls for the investigation of its impact on the cellular heterogeneity proposed to control tumor phenotypes. Reproducing, measuring and controlling TME heterogeneity should stimulate collaborative efforts between biologists and engineers. Studying cancers in well-tuned 3D cell culture platforms is paramount to bring mechanomedicine into the realm of oncology.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Joseph V Rispoli
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
12
|
Abstract
Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are exploited to mimic CSC microenvironment, and their chemical and biological requirements with discussion. The discussion includes the possible effects on both cells in tumors and microenvironment to propose what the critical factors are in controlling the CSC microenvironment focusing the future investigation. Our insights on their availability in drug screening will also follow the discussion.
Collapse
|
13
|
Bazzolo B, Sieni E, Zamuner A, Roso M, Russo T, Gloria A, Dettin M, Conconi MT. Breast Cancer Cell Cultures on Electrospun Poly(ε-Caprolactone) as a Potential Tool for Preclinical Studies on Anticancer Treatments. Bioengineering (Basel) 2020; 8:bioengineering8010001. [PMID: 33375053 PMCID: PMC7822015 DOI: 10.3390/bioengineering8010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
During anticancer drug development, most compounds selected by in vitro screening are ineffective in in vivo studies and clinical trials due to the unreliability of two-dimensional (2D) in vitro cultures that are unable to mimic the cancer microenvironment. Herein, HCC1954 cell cultures on electrospun polycaprolactone (PCL) were characterized by morphological analysis, cell viability assays, histochemical staining, immunofluorescence, and RT-PCR. Our data showed that electrospun PCL allows the in vitro formation of cultures characterized by mucopolysaccharide production and increased cancer stem cell population. Moreover, PCL-based cultures were less sensitive to doxorubicin and electroporation/bleomycin than those grown on polystyrene plates. Collectively, our data indicate that PCL-based cultures may be promising tools for preclinical studies.
Collapse
Affiliation(s)
- Bianca Bazzolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy; (B.B.); (M.T.C.)
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, via Dunant, 3, 21100 Varese, Italy
- Correspondence:
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (A.Z.); (M.R.); (M.D.)
| | - Martina Roso
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (A.Z.); (M.R.); (M.D.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (A.G.)
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (A.G.)
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (A.Z.); (M.R.); (M.D.)
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy; (B.B.); (M.T.C.)
| |
Collapse
|
14
|
A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar Drugs 2020; 18:md18100498. [PMID: 33003514 PMCID: PMC7599646 DOI: 10.3390/md18100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recent attention has focused on the development of an effective three-dimensional (3D) cell culture system enabling the rapid enrichment of cancer stem cells (CSCs) that are resistant to therapies and serving as a useful in vitro tumor model that accurately reflects in vivo behaviors of cancer cells. Presently, an effective 3D in vitro model of ovarian cancer (OC) was developed using a marine collagen-based hydrogel. Advantages of the model include simplicity, efficiency, bioactivity, and low cost. Remarkably, OC cells grown in this hydrogel exhibited biochemical and physiological features, including (1) enhanced cell proliferation, migration and invasion, colony formation, and chemoresistance; (2) suppressed apoptosis with altered expression levels of apoptosis-regulating molecules; (3) upregulated expression of crucial multidrug resistance-related genes; (4) accentuated expression of key molecules associated with malignant progression, such as epithelial–mesenchymal transition transcription factors, Notch, and pluripotency biomarkers; and (5) robust enrichment of ovarian CSCs. The findings indicate the potential of our 3D in vitro OC model as an in vitro research platform to study OC and ovarian CSC biology and to screen novel therapies targeting OC and ovarian CSCs.
Collapse
|
15
|
Limongi T, Dattola E, Botta C, Coluccio ML, Candeloro P, Cucè M, Scopacasa B, Gallo Cantafio ME, Critello CD, Pullano SA, Fiorillo AS, Tagliaferri P, Tassone P, Lamanna E, Di Fabrizio E, Perozziello G. Influence of the Fabrication Accuracy of Hot-Embossed PCL Scaffolds on Cell Growths. Front Bioeng Biotechnol 2020; 8:84. [PMID: 32117950 PMCID: PMC7033415 DOI: 10.3389/fbioe.2020.00084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/29/2020] [Indexed: 12/23/2022] Open
Abstract
Polycaprolactone (PCL) is a biocompatible and biodegradable polymer widely used for the realization of 3D scaffold for tissue engineering applications. The hot embossing technique (HE) allows the obtainment of PCL scaffolds with a regular array of micro pillars on their surface. The main drawback affecting this kind of micro fabrication process is that such structural superficial details can be damaged when detaching the replica from the mold. Therefore, the present study has focused on the optimization of the HE processes through the development of an analytical model for the prediction of the demolding force as a function of temperature. This model allowed calculating the minimum demolding force to obtain regular micropillars without defects. We demonstrated that the results obtained by the analytical model agree with the experimental data. To address the importance of controlling accurately the fabricated microstructures, we seeded on the PCL scaffolds human stromal cell line (HS-5) and monocytic leukemia cell line (THP-1) to evaluate how the presence of regular or deformed pillars affect cells viability. In vitro viability results, scanning electron and fluorescence microscope imaging analysis show that the HS-5 preferentially grows on regular microstructured surfaces, while the THP-1 on irregular microstructured ones.
Collapse
Affiliation(s)
- Tania Limongi
- Department of Applied Science and Technology, Polytechnic University of Turin, Turin, Italy
| | - Elisabetta Dattola
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, University of Magna Graecia, Catanzaro, Italy
| | - Maria Laura Coluccio
- Department of Experimental and Clinical Medicine, University of Magna Graecia, Catanzaro, Italy
| | - Patrizio Candeloro
- Department of Experimental and Clinical Medicine, University of Magna Graecia, Catanzaro, Italy
| | - Maria Cucè
- Department of Experimental and Clinical Medicine, University of Magna Graecia, Catanzaro, Italy
| | - Bernadette Scopacasa
- Department of Experimental and Clinical Medicine, University of Magna Graecia, Catanzaro, Italy
| | | | | | | | - Antonino S Fiorillo
- Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, University of Magna Graecia, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, University of Magna Graecia, Catanzaro, Italy
| | - Ernesto Lamanna
- Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Enzo Di Fabrizio
- Department of Applied Science and Technology, Polytechnic University of Turin, Turin, Italy.,King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gerardo Perozziello
- Department of Experimental and Clinical Medicine, University of Magna Graecia, Catanzaro, Italy
| |
Collapse
|
16
|
PLA Electrospun Scaffolds for Three-Dimensional Triple-Negative Breast Cancer Cell Culture. Polymers (Basel) 2019; 11:polym11050916. [PMID: 31126035 PMCID: PMC6572693 DOI: 10.3390/polym11050916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) systems provide a suitable environment for cells cultured in vitro since they reproduce the physiological conditions that traditional cell culture supports lack. Electrospinning is a cost-effective technology useful to manufacture scaffolds with nanofibers that resemble the extracellular matrix that surround cells in the organism. Poly(lactic acid) (PLA) is a synthetic polymer suitable for biomedical applications. The main objective of this study is to evaluate electrospun (ES)-PLA scaffolds to be used for culturing cancer cells. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with no validated targeted therapy and a high relapse rate. MDA-MB-231 TNBC cells were grown in scaffolds from two different PLA concentrations (12% and 15% w/v). The appropriateness of ES-PLA scaffolds was evaluated using a cell proliferation assay. EGFR and STAT3 gene expression and protein levels were compared in cells grown in 2D versus in 3D cultures. An increase in STAT3 activation was shown, which is related to self-renewal of cancer stem cells (CSCs). Therefore, the enrichment of the breast CSC (BCSC) population was tested using a mammosphere-forming assay and gene expression of BCSC-related stemness and epithelial-to-mesenchymal transition markers. Based on the results obtained, ES-PLA scaffolds are useful for 3D cultures in short culture periods with no BCSC-enrichment.
Collapse
|
17
|
Polonio-Alcalá E, Rabionet M, Ruiz-Martínez S, Ciurana J, Puig T. Three-Dimensional Manufactured Supports for Breast Cancer Stem Cell Population Characterization. Curr Drug Targets 2019; 20:839-851. [DOI: 10.2174/1389450120666181122113300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022]
Abstract
Breast Cancer (BC) is the most common cancer among women and the second cause of female death for cancer. When the tumor is not correctly eradicated, there is a high relapse risk and incidence of metastasis. Breast Cancer Stem Cells (BCSCs) are responsible for initiating tumors and are resistant to current anticancer therapies being in part responsible for tumor relapse and metastasis. The study of BCSCs is limited due to their low percentage within both tumors and established cell models. Hence, three-dimensional (3D) supports are presented as an interesting tool to keep the stem-like features in 3D cell culture. In this review, several 3D culture systems are discussed. Moreover, scaffolds are presented as a tool to enrich in BCSCs in order to find new specific therapeutic strategies against this malignant subpopulation. Anticancer treatments focused on BCSCs could be useful for BC patients, with particular interest in those that progress to current therapies.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- New Therapeutic Targets Laboratory (TargetsLab), Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Marc Rabionet
- New Therapeutic Targets Laboratory (TargetsLab), Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab), Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Girona, Spain
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab), Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
18
|
Sempertegui ND, Narkhede AA, Thomas V, Rao SS. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1978-1993. [DOI: 10.1080/09205063.2018.1498719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nicole D. Sempertegui
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Akshay A. Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shreyas S. Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
19
|
Polonio-Alcalá E, Rabionet M, Guerra AJ, Yeste M, Ciurana J, Puig T. Screening of Additive Manufactured Scaffolds Designs for Triple Negative Breast Cancer 3D Cell Culture and Stem-Like Expansion. Int J Mol Sci 2018; 19:E3148. [PMID: 30322103 PMCID: PMC6213377 DOI: 10.3390/ijms19103148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are tumor-initiating cells responsible for metastasis and tumor reappearance, but their research is limited by the impossibility to cultivate them in a monolayer culture. Scaffolds are three-dimensional (3D) cell culture systems which avoid problems related with culturing BCSC. However, a standardized scaffold for enhancing a BCSC population is still an open issue. The main aim of this study is to establish a suitable poly (lactic acid) (PLA) scaffold which will produce BCSC enrichment, thus allowing them to be studied. Different 3D printing parameters were analyzed using Taguchi experimental design methods. Several PLA scaffold architectures were manufactured using a Fused Filament Fabrication (FFF) 3D printer. They were then evaluated by cell proliferation assay and the configurations with the highest growth rates were subjected to BCSC quantification by ALDH activity. The design SS1 (0.2 mm layer height, 70% infill density, Zigzag infill pattern, 45° infill direction, and 100% flow) obtained the highest proliferation rate and was capable of enhancing a ALDH+ cell population compared to 2D cell culture. In conclusion, the data obtained endorse the PLA porous scaffold as useful for culturing breast cancer cells in a microenvironment similar to in vivo and increasing the numbers of BCSCs.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003 Girona, Spain.
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain.
| | - Marc Rabionet
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003 Girona, Spain.
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain.
| | - Antonio J Guerra
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain.
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Pic de Peguera 15, 17003 Girona, Spain.
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain.
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003 Girona, Spain.
| |
Collapse
|
20
|
Guerra AJ, Cano P, Rabionet M, Puig T, Ciurana J. 3D-Printed PCL/PLA Composite Stents: Towards a New Solution to Cardiovascular Problems. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1679. [PMID: 30208592 PMCID: PMC6164695 DOI: 10.3390/ma11091679] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 11/16/2022]
Abstract
Biodegradable stents (BRS) offer enormous potential but first they must meet five specific requirements: (i) their manufacturing process must be precise; (ii) degradation should have minimal toxicity; (iii) the rate of degradation should match the recovery rate of vascular tissue; (iv) ideally, they should induce rapid endothelialization to restore the functions of vascular tissue, but at the same time reduce the risk of restenosis; and (v) their mechanical behavior should comply with medical requirements, namely, the flexibility required to facilitate placement but also sufficient radial rigidity to support the vessel. Although the first three requirements have been comprehensively studied, the last two have been overlooked. One possible way of addressing these issues would be to fabricate composite stents using materials that have different mechanical, biological, or medical properties, for instance, Polylactide Acid (PLA) or Polycaprolactone (PCL). However, fashioning such stents using the traditional stent manufacturing process known as laser cutting would be impossible. Our work, therefore, aims to produce PCL/PLA composite stents using a novel 3D tubular printer based on Fused Deposition Modelling (FDM). The cell geometry (shape and area) and the materials (PCL and PLA) of the stents were analyzed and correlated with 3T3 cell proliferation, degradation rates, dynamic mechanical and radial expansion tests to determine the best parameters for a stent that will satisfy the five strict BRS requirements. Results proved that the 3D-printing process was highly suitable for producing composite stents (approximately 85⁻95% accuracy). Both PCL and PLA demonstrated their biocompatibility with PCL stents presenting an average cell proliferation of 12.46% and PLA 8.28% after only 3 days. Furthermore, the PCL/PLA composite stents demonstrated their potential in degradation, dynamic mechanical and expansion tests. Moreover, and regardless of the order of the layers, the composite stents showed (virtually) medium levels of degradation rates and mechanical modulus. Radially, they exhibited the virtues of PCL in the expansion step (elasticity) and those of PLA in the recoil step (rigidity). Results have clearly demonstrated that composite PCL/PLA stents are a highly promising solution to fulfilling the rigorous BRS requirements.
Collapse
Affiliation(s)
- Antonio J Guerra
- Department of Mechanical Engineering and Civil Construction, Universitat de Girona, C/Maria Aurèlia Capmany 61, 17003 Girona, Spain.
| | - Paula Cano
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003 Girona, Spain.
| | - Marc Rabionet
- Department of Mechanical Engineering and Civil Construction, Universitat de Girona, C/Maria Aurèlia Capmany 61, 17003 Girona, Spain.
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003 Girona, Spain.
| | - Teresa Puig
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003 Girona, Spain.
| | - Joaquim Ciurana
- Department of Mechanical Engineering and Civil Construction, Universitat de Girona, C/Maria Aurèlia Capmany 61, 17003 Girona, Spain.
| |
Collapse
|
21
|
Thakuri PS, Liu C, Luker GD, Tavana H. Biomaterials-Based Approaches to Tumor Spheroid and Organoid Modeling. Adv Healthc Mater 2018; 7:e1700980. [PMID: 29205942 PMCID: PMC5867257 DOI: 10.1002/adhm.201700980] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Evolving understanding of structural and biological complexity of tumors has stimulated development of physiologically relevant tumor models for cancer research and drug discovery. A major motivation for developing new tumor models is to recreate the 3D environment of tumors and context-mediated functional regulation of cancer cells. Such models overcome many limitations of standard monolayer cancer cell cultures. Under defined culture conditions, cancer cells self-assemble into 3D constructs known as spheroids. Additionally, cancer cells may recapitulate steps in embryonic development to self-organize into 3D cultures known as organoids. Importantly, spheroids and organoids reproduce morphology and biologic properties of tumors, providing valuable new tools for research, drug discovery, and precision medicine in cancer. This Progress Report discusses uses of both natural and synthetic biomaterials to culture cancer cells as spheroids or organoids, specifically highlighting studies that demonstrate how these models recapitulate key properties of native tumors. The report concludes with the perspectives on the utility of these models and areas of need for future developments to more closely mimic pathologic events in tumors.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Chun Liu
- Departments of Radiology, Biomedical Engineering and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Departments of Radiology, Biomedical Engineering and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
22
|
Sitarski AM, Fairfield H, Falank C, Reagan MR. 3d Tissue Engineered In Vitro Models Of Cancer In Bone. ACS Biomater Sci Eng 2018; 4:324-336. [PMID: 29756030 PMCID: PMC5945209 DOI: 10.1021/acsbiomaterials.7b00097] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological models are necessary tools for gaining insight into underlying mechanisms governing complex pathologies such as cancer in the bone. Models range from in vitro tissue culture systems to in vivo models and can be used with corresponding epidemiological and clinical data to understand disease etiology, progression, driver mutations, and signaling pathways. In bone cancer, as with many other cancers, in vivo models are often too complex to study specific cell-cell interactions or protein roles, and 2D models are often too simple to accurately represent disease processes. Consequently, researchers have increasingly turned to 3D in vitro tissue engineered models as a useful compromise. In this review, tissue engineered 3D models of bone and cancer are described in depth and compared to 2D models. Biomaterials and cell types used are described, and future directions in the field of tissue engineered bone cancer models are proposed.
Collapse
Affiliation(s)
- Anna M. Sitarski
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
- University of Maine, Orono, Maine 04469, USA
| | - Heather Fairfield
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
- University of Maine, Orono, Maine 04469, USA
- School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | - Carolyne Falank
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
- University of Maine, Orono, Maine 04469, USA
- School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | - Michaela R. Reagan
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
- University of Maine, Orono, Maine 04469, USA
- School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| |
Collapse
|
23
|
|
24
|
Dogan F, Biray Avci C. Correlation between telomerase and mTOR pathway in cancer stem cells. Gene 2018; 641:235-239. [DOI: 10.1016/j.gene.2017.09.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022]
|
25
|
Zhu ZW, Chen L, Liu JX, Huang JW, Wu G, Zheng YF, Yao KT. A novel three-dimensional tumorsphere culture system for the efficient and low-cost enrichment of cancer stem cells with natural polymers. Exp Ther Med 2017; 15:85-92. [PMID: 29387183 PMCID: PMC5769308 DOI: 10.3892/etm.2017.5419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are considered to serve a key role in tumor progression, recurrence and metastasis. Tumorsphere culture is the most important method for enriching CSCs and is widely used in basic research and drug screening. However, the traditional suspension cell culture system has several disadvantages, including low efficiency, high cost and difficult procedure, making it difficult to produce tumorspheres on a large scale. In the present study, two biomaterials, methylcellulose (MC) and gellan gum (GG), were used to construct a novel culture system based on the traditional system. Subsequently, the characteristics of the novel three-dimensional (3D) culture system were evaluated, the design scheme was optimized, and the morphological and biological features of the tumorspheres cultured in this 3D system were compared with the traditional system. The results revealed that the tumorspheres cultured in the novel 3D system presented a higher seeding density and improved morphology, while maintaining stem-like properties. This evidence suggests that a simple, efficient and low-cost culture system that produces tumorspheres on a large scale was successfully constructed, which can be widely used in various aspects of stem cell research.
Collapse
Affiliation(s)
- Zhen-Wei Zhu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Lin Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jing-Xian Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jun-Wen Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Gang Wu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yan-Fang Zheng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Kai-Tai Yao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
26
|
Gorodzha SN, Muslimov AR, Syromotina DS, Timin AS, Tcvetkov NY, Lepik KV, Petrova AV, Surmeneva MA, Gorin DA, Sukhorukov GB, Surmenev RA. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 2017; 160:48-59. [PMID: 28917149 DOI: 10.1016/j.colsurfb.2017.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/07/2017] [Accepted: 09/02/2017] [Indexed: 01/18/2023]
Abstract
In this study, bone scaffolds composed of polycaprolactone (PCL), piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a combination of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and silicate containing hydroxyapatite (PHBV-SiHA) were successfully fabricated by a conventional electrospinning process. The morphological, chemical, wetting and biological properties of the scaffolds were examined. All fabricated scaffolds are composed of randomly oriented fibres with diameters from 800nm to 12μm. Fibre size increased with the addition of SiHA to PHBV scaffolds. Moreover, fibre surface roughness in the case of hybrid scaffolds was also increased. XRD, FTIR and Raman spectroscopy were used to analyse the chemical composition of the scaffolds, and contact angle measurements were performed to reveal the wetting behaviour of the synthesized materials. To determine the influence of the piezoelectric nature of PHBV in combination with SiHA nanoparticles on cell attachment and proliferation, PCL (non-piezoelectric), pure PHBV, and PHBV-SiHA scaffolds were seeded with human mesenchymal stem cells (hMSCs). In vitro study on hMSC adhesion, viability, spreading and osteogenic differentiation showed that the PHBV-SiHA scaffolds had the largest adhesion and differentiation abilities compared with other scaffolds. Moreover, the piezoelectric PHBV scaffolds have demonstrated better calcium deposition potential compared with non-piezoelectric PCL. The results of the study revealed pronounced advantages of hybrid PHBV-SiHA scaffolds to be used in bone tissue engineering.
Collapse
Affiliation(s)
- Svetlana N Gorodzha
- Experimental Physics Department, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
| | - Albert R Muslimov
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
| | - Dina S Syromotina
- Experimental Physics Department, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation; RASA Center in Tomsk, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
| | - Alexander S Timin
- RASA Center in Tomsk, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
| | - Nikolai Y Tcvetkov
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
| | - Kirill V Lepik
- First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, Saint-Petersburg, Russian Federation
| | - Aleksandra V Petrova
- Department of Molecular Biology, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation; Research Institute of Influenza, Popova str., 15/17, 197376, Saint-Petersburg, Russian Federation
| | - Maria A Surmeneva
- Experimental Physics Department, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
| | - Dmitry A Gorin
- RASA Center in Tomsk, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation; Saratov State University, Saratov, Russian Federation
| | - Gleb B Sukhorukov
- RASA Center in Tomsk, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Roman A Surmenev
- Experimental Physics Department, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation.
| |
Collapse
|
27
|
Rabionet M, Yeste M, Puig T, Ciurana J. Electrospinning PCL Scaffolds Manufacture for Three-Dimensional Breast Cancer Cell Culture. Polymers (Basel) 2017; 9:E328. [PMID: 30971005 PMCID: PMC6418676 DOI: 10.3390/polym9080328] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022] Open
Abstract
In vitro cell culture is traditionally performed within two-dimensional (2D) environments, providing a quick and cheap way to study cell properties in a laboratory. However, 2D systems differ from the in vivo environment and may not mimic the physiological cell behavior realistically. For instance, 2D culture models are thought to induce cancer stem cells (CSCs) differentiation, a rare cancer cell subpopulation responsible for tumor initiation and relapse. This fact hinders the development of therapeutic strategies for tumors with a high relapse percentage, such as triple negative breast cancer (TNBC). Thus, three-dimensional (3D) scaffolds have emerged as an attractive alternative to monolayer culture, simulating the extracellular matrix structure and maintaining the differentiation state of cells. In this work, scaffolds were fabricated through electrospinning different poly(ε-caprolactone)-acetone solutions. Poly(ε-caprolactone) (PCL) meshes were seeded with triple negative breast cancer (TNBC) cells and 15% PCL scaffolds displayed significantly (p < 0.05) higher cell proliferation and elongation than the other culture systems. Moreover, cells cultured on PCL scaffolds exhibited higher mammosphere forming capacity and aldehyde dehydrogenase activity than 2D-cultured cells, indicating a breast CSCs enrichment. These results prove the powerful capability of electrospinning technology in terms of poly(ε-caprolactone) nanofibers fabrication. In addition, this study has demonstrated that electrospun 15% PCL scaffolds are suitable tools to culture breast cancer cells in a more physiological way and to expand the niche of breast CSCs. In conclusion, three-dimensional cell culture using PCL scaffolds could be useful to study cancer stem cell behavior and may also trigger the development of new specific targets against such malignant subpopulation.
Collapse
Affiliation(s)
- Marc Rabionet
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003 Girona, Spain.
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain.
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Pic de Peguera 15, 17003 Girona, Spain.
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003 Girona, Spain.
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain.
| |
Collapse
|
28
|
Samavedi S, Joy N. 3D printing for the development of in vitro cancer models. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Special Issue "Biomaterials and Bioprinting". Molecules 2016; 21:molecules21091231. [PMID: 27649121 PMCID: PMC6273522 DOI: 10.3390/molecules21091231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 11/16/2022] Open
Abstract
The emergence of bioprinting in recent years represents a marvellous advancement in 3D printing technology. It expands the range of 3D printable materials from the world of non-living materials into the world of living materials. Biomaterials play an important role in this paradigm shift. This Special Issue focuses on biomaterials and bioprinting and contains eight articles covering a number of recent topics in this emerging area.
Collapse
|