1
|
de Pádua GMS, Pitteri TS, Ferreira Basso MA, de Vasconcelos LG, Ali A, Dall'Oglio EL, Sampaio OM, Curcino Vieira LC. Synthesis and Evaluation of New Phytotoxic Fluorinated Chalcones as Photosystem II and Seedling Growth Inhibitors. Chem Biodivers 2024; 21:e202301564. [PMID: 38373281 DOI: 10.1002/cbdv.202301564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/24/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024]
Abstract
The development of novel phytotoxic compounds has been an important aim of weed control research. In this study, we synthesized fluorinated chalcone derivatives featuring both electron-donating and electron-withdrawing groups. These compounds were evaluated both as inhibitors of the photosystem II (PSII) electron chain as well as inhibitors of the germination and seedling growth of Amaranthus plants. Chlorophyll a (Chl a) fluorescence assay was employed to evaluate their effects on PSII, while germination experiments were conducted to assess their impact on germination and seedling development. The results revealed promising herbicidal activity for (E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (7 a) and (E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (7 e). Compounds 7 a and 7 e exhibited a reduction in Chl a parameters associated with performance indexes and electron transport per reaction center. This reduction suggests a decrease in PSII activity, attributed to the blockage of electron flow at the quinone pool. Molecular docking analyses of chalcone derivatives with the D1 protein of PSII revealed a stable binding conformation, wherein the carbonyl and fluorine groups interacted with Phe265 and His215 residues, respectively. Additionally, at a concentration of 100 μM, compound 7 e demonstrated pre- and post-emergent herbicidal activity, resulting in a reduction of the seed germination index, radicle and hypocotyl lengths of Amaranthus weeds.
Collapse
Affiliation(s)
| | - Taciane Santos Pitteri
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | | | | | - Akbar Ali
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | | | - Olívia Moreira Sampaio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | | |
Collapse
|
2
|
Stopková L, Gališinová J, Šuchtová Z, Čižmárik J, Andriamainty F. Determination of Critical Micellar Concentration of Homologous 2-Alkoxyphenylcarbamoyloxyethyl-Morpholinium Chlorides. Molecules 2018; 23:molecules23051064. [PMID: 29724070 PMCID: PMC6100405 DOI: 10.3390/molecules23051064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
The critical micellar concentrations of selected alkyloxy homologues of local anesthetic 4-(2-{[(2-alkoxyphenyl)carbamoyl]oxy}ethyl)morpholin-4-ium chloride with nc = 2, 4, 5, 6, 7, 8, and 9 carbons in alkyloxy tail were determined by absorption spectroscopy in the UV⁻vis spectral region with the use of a pyrene probe. Within the homologous series of the studied amphiphilic compounds, the ln(cmc) was observed to be dependent linearly on the number of carbon atoms nc in the hydrophobic tail: ln(cmc) = 0.705⁻0.966 nc. The Gibbs free energy, necessary for the transfer of the methylene group of the alkoxy chain from the water phase into the inner part of the micelle at the temperature of 25 °C and pH ≈ 4.5⁻5.0, was found to be −2.39 kJ/mol. The experimentally determined cmc values showed good correlations with the predicted values of the bulkiness of the alkoxy tail expressed as the molar volume of substituent R, as well as with the surface tension of the compounds.
Collapse
Affiliation(s)
- Lenka Stopková
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Jana Gališinová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Zuzana Šuchtová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Jozef Čižmárik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Fils Andriamainty
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| |
Collapse
|
3
|
Proline-Based Carbamates as Cholinesterase Inhibitors. Molecules 2017; 22:molecules22111969. [PMID: 29135926 PMCID: PMC6150311 DOI: 10.3390/molecules22111969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/28/2017] [Accepted: 11/10/2017] [Indexed: 12/25/2022] Open
Abstract
Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2S)-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC50 = 46.35 μM) was the most potent agent. On the other hand, benzyl (2S)-2-[(4-bromophenyl)-] and benzyl (2S)-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC50 = 28.21 and 27.38 μM, respectively) comparable with that of rivastigmine. The ortho-brominated compound as well as benzyl (2S)-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure–inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3′-/4′-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE.
Collapse
|
4
|
Gonec T, Kos J, Pesko M, Dohanosova J, Oravec M, Liptaj T, Kralova K, Jampilek J. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II. Molecules 2017; 22:molecules22101709. [PMID: 29023407 PMCID: PMC6151762 DOI: 10.3390/molecules22101709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022] Open
Abstract
Series of seventeen new multihalogenated 1-hydroxynaphthalene-2-carboxanilides was prepared and characterized. All the compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. 1-Hydroxy-N-phenylnaphthalene-2-carboxamides substituted in the anilide part by 3,5-dichloro-, 4-bromo-3-chloro-, 2,5-dibromo- and 3,4,5-trichloro atoms were the most potent PET inhibitors (IC50 = 5.2, 6.7, 7.6 and 8.0 µM, respectively). The inhibitory activity of these compounds depends on the position and the type of halogen substituents, i.e., on lipophilicity and electronic properties of individual substituents of the anilide part of the molecule. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB in the PET chain occurring on the acceptor side of PS II can be suggested as the site of action of the compounds. The structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, Brno 61242, Czech Republic.
| | - Jiri Kos
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, Brno 61242, Czech Republic.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, Bratislava 83232, Slovakia.
| | - Matus Pesko
- Department of Environmental Ecology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava 84215, Slovakia.
| | - Jana Dohanosova
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava 81237, Slovakia.
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic.
| | - Tibor Liptaj
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava 81237, Slovakia.
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava 84215, Slovakia.
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, Bratislava 83232, Slovakia.
| |
Collapse
|