1
|
Lv C, Wang S, Sun C, Liu J, Chen Y, Wang C, Yuan C, Qin F, Li T. Psoralen and Isopsoralen Activate Nuclear Factor Erythroid 2-Related Factor 2 Through Interaction With Kelch-Like ECH-Associated Protein 1. Food Sci Nutr 2025; 13:e4768. [PMID: 39867839 PMCID: PMC11761412 DOI: 10.1002/fsn3.4768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
As natural furocoumarins, psoralen and its isomer isopsoralen are widely distributed in various fruits including Ficus carica L., vegetables including celery, and medicinal herbs including Psoralea corylifolia L. Although psoralen and isopsoralen have been used as dietary supplements because of their bioactivities such as antibacterial and anti-inflammatory properties; however, the potential mechanisms underlying the antioxidant activities of these two furocoumarins still need to be explored. Hence, the aims of this work were to examine the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by psoralen and isopsoralen, as well as the binding interaction of Kelch-like ECH-associated protein 1 (Keap1) with these two furocoumarins. Interestingly, both psoralen and isopsoralen induced Nrf2 nuclear translocation in a dose-dependent manner in HEK293T cells. These two furanocoumarins also activated antioxidant response element (ARE)-driven luciferase activity. The mRNA expression of GCLM, HO-1, and NQO1 genes was significantly upregulated by treatment of HEK293T cells with psoralen and isopsoralen, respectively. Similarly, the expression of proteins can be promoted. Both psoralen and isopsoralen were located in the top of the central pocket of the Keap1 Kelch domain, suggesting that they were natural ligands of Keap1. In conclusion, both psoralen and isopsoralen activate Nrf2 through interaction with Keap1, thereby serving as natural antioxidants.
Collapse
Affiliation(s)
- Chengyu Lv
- Institute of Agro‐Food TechnologyJilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Song Wang
- Institute of Agro‐Food TechnologyJilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Chang Sun
- Institute of Agro‐Food TechnologyJilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Jing Liu
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunChina
| | - Yihao Chen
- Institute of Agro‐Food TechnologyJilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Chao Wang
- Institute of Agro‐Food TechnologyJilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Cuiping Yuan
- Institute of Agro‐Food TechnologyJilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Fengxian Qin
- Institute of Agro‐Food TechnologyJilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Tiezhu Li
- Institute of Agro‐Food TechnologyJilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| |
Collapse
|
2
|
Lu M, Zhang X, Li W, Li X, Li S, Yin X, Zhang Z. The effects of CYP2B6 inactivators on the metabolism of ciprofol. PLoS One 2024; 19:e0307995. [PMID: 39074104 DOI: 10.1371/journal.pone.0307995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Ciprofol is a novel short-acting intravenous anaesthetic developed in China that is mainly metabolized by cytochrome P450 2B6 (CYP2B6) and uridine diphosphate glucuronosyltransferase 1A9 (UGT1A9). Currently, insufficient evidence is available to support drug‒drug interactions between ciprofol and CYP2B6 inactivators. Here, we established a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method to assess the concentration of ciprofol and investigated the effects of psoralen and clopidogrel on the metabolism of ciprofol in liver microsomes and rats. In rat and human liver microsomes, the median inhibitory concentration (IC50) values of psoralen were 63.31 μmol·L-1 and 34.05 μmol·L-1, respectively, showing mild inhibitory effects on ciprofol metabolism, whereas the IC50 values of clopidogrel were 6.380 μmol·L-1 and 2.565 μmol·L-1, respectively, with moderate inhibitory effects. SD rats were randomly divided into three groups: psoralen (27 mg·kg-1), clopidogrel (7.5 mg·kg-1), and the same volume of 0.5% carboxy methyl cellulose. After 7 days, all rats were injected with 2.4 mg·kg-1 ciprofol. Compared with the control group, the AUC and MRT values of ciprofol in the psoralen and clopidogrel groups were significantly greater, whereas the CL values were significantly lower. In addition, the durations of loss of righting reflex (LORR) in the psoralen and clopidogrel groups were 16.1% and 23.0% longer than that in the control group, respectively. In conclusion, psoralen and clopidogrel inhibit ciprofol metabolism to different degrees and prolong the duration of LORR in rats.
Collapse
Affiliation(s)
- Ming Lu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaorui Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenli Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangchen Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Yin
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhiqing Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Wang Y, Zhou Q, Wang H, Song W, Wang J, Mamun AA, Geng P, Zhou Y, Wang S. Effect of P. corylifolia on the pharmacokinetic profile of tofacitinib and the underlying mechanism. Front Pharmacol 2024; 15:1351882. [PMID: 38650629 PMCID: PMC11033359 DOI: 10.3389/fphar.2024.1351882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
This work aimed to explore the mechanisms underlying the interaction of the active furanocoumarins in P. corylifolia on tofacitinib both in vivo and in vitro. The concentration of tofacitinib and its metabolite M8 was determined using UPLC-MS/MS. The peak area ratio of M8 to tofacitinib was calculated to compare the inhibitory ability of furanocoumarin contained in the traditional Chinese medicine P. corylifolia in rat liver microsomes (RLMs), human liver microsomes (HLMs) and recombinant human CYP3A4 (rCYP3A4). We found that bergapten and isopsoralen exhibited more significant inhibitory activity in RLMs than other furanocoumarins. Bergapten and isopsoralen were selected to investigate tofacitinib drug interactions in vitro and in vivo. Thirty rats were randomly allocated into 5 groups (n = 6): control (0.5% CMC-Na), low-dose bergapten (20 mg/kg), high-dose bergapten (50 mg/kg), low-dose isopsoralen (20 mg/kg) and ketoconazole. 10 mg/kg of tofacitinib was orally intervented to each rat and the concentration level of tofacitinib in the rats were determined by UPLC-MS/MS. More imporrantly, the results showed that bergapten and isopsoralen significantly inhibited the metabolism of tofacitinib metabolism. The AUC(0-t), AUC(0-∞), MRT(0-t), MRT(0-∞) and Cmax of tofacitinib increased in varying degrees compared with the control group (all p < 0.05), but CLz/F decreased in varying degrees (p < 0.05) in the different dose bergapten group and isopsoralen group. Bergapten, isopsoralen and tofacitinib exhibit similar binding capacities with CYP3A4 by AutoDock 4.2 software, confirming that they compete for tofacitinib metabolism. P. corylifolia may considerably impact the metabolism of tofacitinib, which can provide essential information for the accurate therapeutic application of tofacitinib.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yunfang Zhou
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Wenzhou Medical University Lishui Hospital, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Wenzhou Medical University Lishui Hospital, Lishui People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
4
|
Tripathi N, Bhardwaj N, Kumar S, Jain SK. Phytochemical and Pharmacological Aspects of Psoralen - A Bioactive Furanocoumarin from Psoralea corylifolia Linn. Chem Biodivers 2023; 20:e202300867. [PMID: 37752710 DOI: 10.1002/cbdv.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Since long ago, medicinal plants have played a vital role in drug discovery. Being blessed and rich in chemovars with diverse scaffolds, they have unique characteristics of evolving based on the need. The World Health Organization also mentions that medicinal plants remain at the center for meeting primary healthcare needs as the population relies on them. The plant-derived natural products have remained an attractive choice for drug development owing to their specific biological functions relevant to human health and also the high degree of potency and specificity they offer. In this context, one such esteemed phytoconstituent with inexplicable biological potential is psoralen, a furanocoumarin. Psoralen was the first constituent isolated from the plant Psoralea corylifolia, commonly known as Bauchi. Despite being a life-saver for psoriasis, vitiligo, and leukoderma, it also showed immense anticancer, anti-inflammatory, and anti-osteoporotic potential. This review brings attention to the possible application of psoralen as an attractive target for rational drug design and medicinal chemistry. It discusses the various methods for the total synthesis of psoralen, its extraction, the pharmacological spectrum of psoralen, and the derivatization done on psoralen.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Sanjay Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| |
Collapse
|
5
|
Liu B, Fang S, Zhou K, Ma L, Shi Y, Wang Y, Gao X. Unveiling hepatotoxicity distinction of coumarin-related compounds from glycosides to aglycones in Fructus Psoraleae by integrating UPLC-Q-TOF-MS and high content analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023:116664. [PMID: 37253395 DOI: 10.1016/j.jep.2023.116664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/04/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Psoraleae (FP), the dried and ripe fruit of Cullen corylifolium (L.) Medik., is widely used due to its various clinical pharmacological effects, but its hepatotoxicity restricts its clinical application. So far, its hepatotoxic components and their underlying mechanism have not been systematically elucidated. AIM OF THE STUDY This study was undertaken to reveal the hepatotoxicity distinction of coumarin-related compounds from glycosides to aglycones in FP and elucidate their potential mechanism. METHODS Rats were administrated with the aqueous extract of Fructus Psoraleae (AEFP), in which eight coumarin-related compounds were focused. Subsequently, compounds exposed in rats' livers were detected by UPLC-Q-TOF-MS, and the identified hepatotoxic compounds were evaluated to elaborate their possible mechanism by the aid of high content analysis (HCA). RESULTS Eight coumarin-related compounds were identified, among which psoralenoside (PO), isopsoralenoside (IPO), psoralen (P), and isopsoralen (IP) were the principally exposed compounds in rats' livers. Furocoumarinic acid glucoside (FAG), (E)-3-(4-(((2S, 3R, 4S, 5S, 6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yl) oxy) benzofuran-5-yl) acrylic acid (isofurocoumarinic acid glucoside, IFAG), furocoumarinic acid (FA), and (E)-3-(4-hydroxybenzofuran-5-yl) acrylic acid (isofurocoumarinic acid, IFA) were also detected in low abundance. P, IP, FA, and IFA were identified as the hepatotoxic compounds, while their glycosides were almost non-hepatotoxic. The HCA's results showed that hepatotoxic compounds disrupted the balance in reactive oxygen species (ROS), nuclear area, and mitochondrial membrane potential of HepG2 cells, leading to the occurrence of hepatotoxicity. CONCLUSIONS P, IP, FA, and IFA were identified as hepatotoxic compounds, from which P and IP were proposed as the important risk components for hepatotoxicity. The conversion from glycosides to aglycones played an essential role in FP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Benyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kun Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lulu Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yaling Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Yan C, Peng T, Zhang T, Wang Y, Li N, Wang K, Jiang X. Molecular mechanisms of hepatotoxicity induced by compounds occurring in Evodiae Fructus. Drug Metab Rev 2023; 55:75-93. [PMID: 36803497 DOI: 10.1080/03602532.2023.2180027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Evodiae Fructus (EF) is a common herbal medicine with thousands of years of medicinal history in China, which has been demonstrated with many promising pharmacological effects on cancer, cardiovascular diseases and Alzheimer's disease. However, there have been increasing reports of hepatotoxicity associated with EF consumption. Unfortunately, in a long term, many implicit constituents of EF as well as their toxic mechanisms remain poorly understood. Recently, metabolic activation of hepatotoxic compounds of EF to generate reactive metabolites (RMs) has been implicated. Herein, we capture metabolic reactions relevant to hepatotoxicity of these compounds. Initially, catalyzed by the hepatic cytochrome P450 enzymes (CYP450s), the hepatotoxic compounds of EF are oxidized to generate RMs. Subsequently, the highly electrophilic RMs could react with nucleophilic groups contained in biomolecules, such as hepatic proteins, enzymes, and nucleic acids to form conjugates and/or adducts, leading to a sequence of toxicological consequences. In addition, currently proposed biological pathogenesis, including oxidative stress, mitochondrial damage and dysfunction, endoplasmic reticulum (ER) stress, hepatic metabolism disorder, and cell apoptosis are represented. In short, this review updates the knowledge on the pathways of metabolic activation of seven hepatotoxic compounds of EF and provides considerable insights into the relevance of proposed molecular hepatotoxicity mechanisms from a biochemical standpoint, for the purpose of providing a theoretical guideline for the rational application of EF in clinics.
Collapse
Affiliation(s)
- Caiqin Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Ting Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
7
|
Zhang C, Fan S, Zhao JQ, Jiang Y, Sun JX, Li HJ. Transcriptomics and metabolomics reveal the role of CYP1A2 in psoralen/isopsoralen-induced metabolic activation and hepatotoxicity. Phytother Res 2023; 37:163-180. [PMID: 36056681 DOI: 10.1002/ptr.7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
Psoralen and isopsoralen are the pharmacologically important but hepatotoxic components in Psoraleae Fructus. The purpose of this study was to reveal the underlying mechanism of psoralen/isopsoralen-induced hepatotoxicity. Initially, we applied integrated analyses of transcriptomic and metabolomic profiles in mice treated with psoralen and isopsoralen, highlighting the xenobiotic metabolism by cytochromes P450 as a potential pathway. Then, with verifications of expression levels by qRT-PCR and western blot, affinities by molecular docking, and metabolic contributions by recombinant human CYP450 and mouse liver microsomes, CYP1A2 was screened out as the key metabolic enzyme. Afterwards, CYP1A2 induction and inhibition models in HepG2 cells and mice were established to verify the role of CYP1A2, demonstrating that induction of CYP1A2 aggravated the hepatotoxicity, and conversely inhibition alleviated the hepatotoxic effects. Additionally, we detected glutathione adducts with reactive intermediates of psoralen and isopsoralen generated by CYP1A2 metabolism in biosystems of recombinant human CYP1A2 and mouse liver microsomes, CYP1A2-overexpressed HepG2 cells, mice livers and the chemical reaction system using UPLC-Q-TOF-MS/MS. Ultimately, the high-content screening presented the cellular oxidative stress and relevant hepatotoxicity due to glutathione depletion by reactive intermediates. In brief, our findings illustrated that CYP1A2-mediated metabolic activation is responsible for the psoralen/isopsoralen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Song Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia-Xing Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Zhang C, Zhao JQ, Sun JX, Li HJ. Psoralen and isopsoralen from Psoraleae Fructus aroused hepatotoxicity via induction of aryl hydrocarbon receptor-mediated CYP1A2 expression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115577. [PMID: 35872289 DOI: 10.1016/j.jep.2022.115577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoraleae Fructus (PF), a traditional Chinese medicine, has long been used to treat diseases such as cancer, osteoporosis and leukoderma. Psoralen and isopsoralen are main bioactive ingredients of PF with anti-tumor, anti-inflammatory, estrogen-like neuroprotection, etc., meanwhile they are also representative hepatotoxic components of PF. Hepatic CYP1A2 has been reported to be the important metabolic enzymes involved in psoralen and isopsoralen-induced hepatotoxicity. However, the relationship between the hepatotoxicity and CYP1A2 expression, and the underlying mechanism of regulating CYP1A2 expression remain unclear. AIM OF STUDY The aim of this study was to explore the associated mechanism between psoralen or isopsoralen induced hepatotoxicity and activated aryl hydrocarbon receptor (AhR)-mediated transcriptional induction of CYP1A2 in vitro and in vivo. MATERIALS AND METHODS Psoralen and isopsoralen at different doses were treated on HepG2 cells (10, 25, 50, 100, 200 μM for 2, 12, 24, 36, 48 h) and mice (20, 80, 160 mg/kg for 3, 7, 14 days) for different time, to assess the correlation of induced hepatotoxicity and CYP1A2 mRNA and protein expression in vivo and in vitro, as well as the effect on CYP1A2 enzyme activity evaluated by phenacetin metabolism. In addition, the potential mechanism of the regulation of CYP1A2 expression mediated by AhR was explored through nucleocytoplasmic shuttling, immunofluorescence, cellular thermal shift assay and molecular docking, etc. RESULTS: Psoralen and isopsoralen induced cytotoxicity in HepG2 cells, and hepatomegaly, biochemicals disorder and tissue pathological impairment in mice, respectively in dose- and time-dependent manners. Simultaneously accompanied with elevated levels of CYP1A2 mRNA and protein in the same trend, and the CYP1A2 activity was remarkably inhibited in vitro but significantly elevated overall in vivo. Besides, psoralen and isopsoralen bound to AhR and activated translocation of AhR from the cytoplasm to the nucleus, leading to the transcriptional induction of target gene CYP1A2. CONCLUSIONS Hepatotoxicities in HepG2 cells and mice aroused by psoralen and isopsoralen were related to the induction of CYP1A2 expression and activity, whose underlying mechanism might be psoralen or isopsoralen activated AhR translocation and induced increase of CYP1A2 transcriptional expression. Hopefully, these finding are conductive to propose an alert about the combined usage of psoralen or isopsoralen and AhR ligands or CYP1A2 substrates in clinical practice.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jia-Xing Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
9
|
Ren Y, Song X, Tan L, Guo C, Wang M, Liu H, Cao Z, Li Y, Peng C. A Review of the Pharmacological Properties of Psoralen. Front Pharmacol 2020; 11:571535. [PMID: 33013413 PMCID: PMC7500444 DOI: 10.3389/fphar.2020.571535] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Psoralen is the principal bioactive component in the dried fruits of Cullen corylifolium (L.) Medik (syn. Psoralea corylifolia L), termed "Buguzhi" in traditional Chinese medicine (TCM). Recent studies have demonstrated that psoralen displays multiple bioactive properties, beneficial for the treatment of osteoporosis, tumors, viruses, bacteria, and inflammation. The present review focuses on the research evidence relating to the properties of psoralen gathered over recent years. Firstly, multiple studies have demonstrated that psoralen exerts strong anti-osteoporotic effects via regulation of osteoblast/osteoclast/chondrocyte differentiation or activation due to the participation in multiple molecular mechanisms of the wnt/β-catenin, bone morphogenetic protein (BMP), inositol-requiring enzyme 1 (IRE1)/apoptosis signaling kinase 1 (ASK1)/c-jun N-terminal kinase (JNK) and the Protein Kinase B(AKT)/activator protein-1 (AP-1) axis, and the expression of miR-488, peroxisome proliferators-activated receptor-gamma (PPARγ), and matrix metalloproteinases (MMPs). In addition, the antitumor properties of psoralen are associated with the induction of ER stress-related cell death via enhancement of PERK: Pancreatic Endoplasmic Reticulum Kinase (PERK)/activating transcription factor (ATF), 78kD glucose-regulated protein (GRP78)/C/EBP homologous protein (CHOP), and 94kD glucose-regulated protein (GRP94)/CHOP signaling, and inhibition of P-glycoprotein (P-gp) or ATPase that overcomes multidrug resistance. Furthermore, multiple articles have shown that the antibacterial, anti-inflammatory and neuroprotective effects of psoralen are a result of its interaction with viral polymerase (Pol), destroying the formation of biofilm, and regulating the activation of tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), interleukin 4/5/6/8/12/13 (IL-4/5/6/8/12/13), GATA-3, acetylcholinesterase (AChE), and the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the toxic effects and mechanisms of action of psoralen have also been reviewed.
Collapse
Affiliation(s)
- Yali Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xiaominting Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Lu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Chuanjie Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Miao Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Hui Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China, Pharmaceutical University, Nanjing, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yuzhi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|
10
|
An important mechanism of herb-induced hepatotoxicity: To produce RMs based on active functional groups-containing ingredients from phytomedicine by binding CYP450s. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
11
|
Xia Q, Wei L, Zhang Y, Kong H, Shi Y, Wang X, Chen X, Han L, Liu K. Psoralen Induces Developmental Toxicity in Zebrafish Embryos/Larvae Through Oxidative Stress, Apoptosis, and Energy Metabolism Disorder. Front Pharmacol 2018; 9:1457. [PMID: 30618751 PMCID: PMC6305401 DOI: 10.3389/fphar.2018.01457] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Psoralen toxicity is an issue of wide concern. However, an assay for psoralen-induced developmental toxicity has not been reported to date. Moreover, the underlying mechanism of psoralen-induced developmental toxicity is unclear. Therefore, this study attempted to develop a psoralen-induced developmental toxicity assay in zebrafish embryos/larvae. Psoralen treatment caused a decrease in the hatching rate and body length and a significant increase in the malformation rate of zebrafish. Yolk retention, pericardial edema, swim-bladder deficiency, and curved body shape were also observed after psoralen treatment. Yolk retention might have been caused by an abnormality in lipid metabolism. Further experiments indicated that psoralen exerted toxic effects on the developing heart, liver, phagocytes, and nervous system. Increased generation of reactive oxygen species, inhibition of total superoxide dismutase activity, and increased malondialdehyde concentrations indicated inhibition of antioxidant capacity and the presence of oxidative stress. A greater number of apoptotic cells were observed after psoralen exposure, relative to the control. Furthermore, the results of gene-expression analysis showed that psoralen induced developmental toxicity by means of oxidative stress, apoptosis, and energy metabolism abnormalities. These findings will be helpful in understanding psoralen-induced toxicity.
Collapse
Affiliation(s)
- Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lingying Wei
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haotian Kong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yongping Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|