1
|
Feng D, Geng X, Zuo L, Li Z, Wang L. Radical-Polar Crossover Bicyclization Enables a Modular Synthesis of Saturated Bicyclic Amines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501310. [PMID: 40278825 DOI: 10.1002/advs.202501310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/05/2025] [Indexed: 04/26/2025]
Abstract
The rapid assembly of diverse cyclic amines from simple precursors is now considered as an ideal platform with respect to efficiency and sustainability. To date, numerous synthetic methods have been successfully developed however, most of them are limited to a narrow subset of cyclic amines, with variations in ring size often requiring different substrates and distinct synthetic strategies. Furthermore, the "escape-from-Flatland" concept has led chemists to focus on the synthesis of C(sp3)-rich small molecules for potential drug candidates. Herein, the successful realization of a radical-polar crossover bicyclization reaction is reported from easily available cyclopropylamines and substituted alkenes through photoredox catalysis. This approach introduces an innovative methodology for the de novo synthesis of a diverse collection of 4/5-, 5/5-, 6/5-,7/5-, and 5/6-fused saturated bicyclic amines in a systematic and modular manner with excellent diastereoselectivity. This work highlights the efficiency and utility of the photoinduced radical-polar crossover bicyclization, the applicability of which is showcased by excellent functional group tolerance, wide substrate scopes, and simple derivatization reactions.
Collapse
Affiliation(s)
- Dewei Feng
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Xiao Geng
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
| | - Lingling Zuo
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
| | - Zhifang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| |
Collapse
|
2
|
Peng Y, Wang G, Klare HFT, Oestreich M. Ring Contraction of Saturated Cyclic Amines and Rearrangement of Acyclic Amines Through Their Corresponding Hydroxylamines. Angew Chem Int Ed Engl 2024; 63:e202410483. [PMID: 38953245 DOI: 10.1002/anie.202410483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/03/2024]
Abstract
Compared to modifications at the molecular periphery, skeletal adjustments present greater challenges. Within this context, skeletal rearrangement technology stands out for its significant advantages in rapidly achieving structural diversity. Yet, the development of this technology for ring contraction of saturated cyclic amines remains exceedingly rare. While most existing methods rely on specific substitution patterns to achieve ring contraction, there is a persistent demand for a more general strategy for substitution-free cyclic amines. To address this issue, we report a B(C6F5)3-catalyzed skeletal rearrangement of hydroxylamines with hydrosilanes. This methodology, when combined with the N-hydroxylation of amines, enables the regioselective ring contraction of cyclic amines and proves equally effective for rapid reorganization of acyclic amine skeletons. By this, the direct scaffold hopping of drug molecules and the strategic deletion of carbon atoms are achieved in a mild manner. Based on mechanistic experiments and density functional theory calculations, a possible mechanism for this process is proposed.
Collapse
Affiliation(s)
- Yi Peng
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
3
|
Conejo-García A, Jiménez-Martínez Y, Cámara R, Franco-Montalbán F, Peña-Martín J, Boulaiz H, Carrión MD. New substituted benzoxazine derivatives as potent inducers of membrane permeability and cell death. Bioorg Med Chem 2024; 111:117849. [PMID: 39068873 DOI: 10.1016/j.bmc.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The search for new agents targeting different forms of cell death is an important research focus for developing new and potent antitumor therapies. As a contribution to this endeavor, we have designed and synthesized a series of new substituted 3,4-dihydro-2H-1,4-benzoxazine derivatives. These compounds have been evaluated for their efficacy against MCF-7 breast cancer and HCT-116 colon cancer cell lines. Overall, substituting this heterocycle led to improved antiproliferative activity compared to the unsubstituted derivative 1. The most active compounds, 2b and 4b, showed IC50 values of 2.27 and 3.26 μM against MCF-7 cells and 4.44 and 7.63 μM against HCT-116 cells, respectively. To investigate the mechanism of action of the target compounds, the inhibition profile of 8 kinases involved in cell signaling was studied highlighting residual activity on HER2 and JNK1 kinases. 2b and 4b showed a consistent binding mode to both receptor kinases, establishing significant interactions with known and catalytically important domains and residues. Compounds 2b and 4b exhibit potent cytotoxic activity by disrupting cell membrane permeability, likely triggering both inflammatory and non-inflammatory cell death mechanisms. This dual capability increases their versatility in the treatment of different stages or types of tumors, providing greater flexibility in clinical applications.
Collapse
Affiliation(s)
- Ana Conejo-García
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain
| | - Yaiza Jiménez-Martínez
- Department of Anatomy and Human Embryology, Faculty of Medicine, Avenida de la Investigación 11, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Rubén Cámara
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Francisco Franco-Montalbán
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Jesús Peña-Martín
- Department of Anatomy and Human Embryology, Faculty of Medicine, Avenida de la Investigación 11, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Houria Boulaiz
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain; Department of Anatomy and Human Embryology, Faculty of Medicine, Avenida de la Investigación 11, University of Granada, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Avenida del Conocimiento s/n, 18016 Granada, Spain.
| | - M Dora Carrión
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Avenida de Madrid, 15, 18012 Granada, Spain.
| |
Collapse
|
4
|
Qin ZY, Gao S, Zou Y, Liu Z, Wang JB, Houk KN, Arnold FH. Biocatalytic Construction of Chiral Pyrrolidines and Indolines via Intramolecular C(sp 3)-H Amination. ACS CENTRAL SCIENCE 2023; 9:2333-2338. [PMID: 38161360 PMCID: PMC10755850 DOI: 10.1021/acscentsci.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Nature harnesses exquisite enzymatic cascades to construct N-heterocycles and further uses these building blocks to assemble the molecules of life. Here we report an enzymatic platform to construct important chiral N-heterocyclic products, pyrrolidines and indolines, via abiological intramolecular C(sp3)-H amination of organic azides. Directed evolution of cytochrome P411 (a P450 enzyme with serine as the heme-ligating residue) yielded variant P411-PYS-5149, capable of catalyzing the insertion of alkyl nitrene into C(sp3)-H bonds to build pyrrolidine derivatives with good enantioselectivity and catalytic efficiency. Further evolution of activity on aryl azide substrates yielded variant P411-INS-5151 that catalyzes intramolecular C(sp3)-H amination to afford chiral indolines. In addition, we show that these enzymatic aminations can be coupled with a P411-based carbene transferase or a tryptophan synthase to generate an α-amino lactone or a noncanonical amino acid, respectively, underscoring the power of new-to-nature biocatalysis in complexity-building chemical synthesis.
Collapse
Affiliation(s)
- Zi-Yang Qin
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Shilong Gao
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Yike Zou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Zhen Liu
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - James B. Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Kendall N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Kuriyama Y, Sasano Y, Iwabuchi Y. Azetidine synthesis by La(OTf) 3-catalyzed intramolecular regioselective aminolysis of cis-3,4-epoxy amines. Front Chem 2023; 11:1251299. [PMID: 37795386 PMCID: PMC10546187 DOI: 10.3389/fchem.2023.1251299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
Azetidine is a prevalent structural motif found in various biologically active compounds. In this research paper, we report La(OTf)3-catalyzed intramolecular regioselective aminolysis of cis-3,4-epoxy amines to afford azetidines. This reaction proceeded in high yields even in the presence of acid-sensitive and Lewis basic functional groups.
Collapse
Affiliation(s)
| | | | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Rykaczewski KA, Becker MR, Anantpur MJ, Sausa RC, Johnson EC, Orlicki JA, Bukowski EJ, Sabatini JJ, Schindler CS. Photochemical Strategies Enable the Synthesis of Tunable Azetidine-Based Energetic Materials. J Am Chem Soc 2022; 144:19089-19096. [PMID: 36197722 DOI: 10.1021/jacs.2c08191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite their favorable properties, azetidines are often overlooked as lead compounds across multiple industries. This is often attributed to the challenging synthesis of densely functionalized azetidines in an efficient manner. In this work, we report the scalable synthesis and characterization of seven azetidines with varying regio- and stereochemistry and their application as novel azetidine-based energetic materials, enabled by the visible-light-mediated aza Paternò-Büchi reaction. The performance and stark differences in the physical properties of these new compounds make them excellent potential candidates as novel solid melt-castable explosive materials, as well as potential liquid propellant plasticizers. This work highlights the scalability and utility of the visible-light aza Paternò-Büchi reaction and demonstrates the impact of stereochemical considerations on the physical properties of azetidine-based energetics. Considering the versatility and efficiency of the presented synthetic strategies, we expect that this work will guide the development of new azetidine-based materials in the energetics space as well as other industries.
Collapse
Affiliation(s)
- Katie A Rykaczewski
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, Michigan 48109, United States
| | - Marc R Becker
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, Michigan 48109, United States
| | - Manasi J Anantpur
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, Michigan 48109, United States
| | - Rosario C Sausa
- Detonation Sciences & Modeling Branch, DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Eric C Johnson
- Energetics Synthesis & Formulation Branch, DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Joshua A Orlicki
- Polymers Branch, DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Eric J Bukowski
- Energetics Synthesis & Formulation Branch, DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Jesse J Sabatini
- Energetics Synthesis & Formulation Branch, DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Corinna S Schindler
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Synthesis of Functionalized Azepines via Cu(I)-Catalyzed Tandem Amination/Cyclization Reaction of Fluorinated Allenynes. Molecules 2022; 27:molecules27165195. [PMID: 36014436 PMCID: PMC9416787 DOI: 10.3390/molecules27165195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 01/17/2023] Open
Abstract
An efficient method for the selective preparation of trifluoromethyl-substituted azepin-2-carboxylates and their phosphorous analogues has been developed via Cu(I)-catalyzed tandem amination/cyclization reaction of functionalized allenynes with primary and secondary amines.
Collapse
|
8
|
Soleimani Amiri S, Hossaini Z, Azizi Z. Synthesis and investigation of antioxidant and antimicrobial activity of new pyrazinopyrroloazepine derivatives using Fe
3
O
4
/CuO/ZnO@MWCNT MNCs as organometallic nanocatalyst by new MCRs. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Zahra Azizi
- Department of Chemistry, Karaj Branch Islamic Azad University Karaj Iran
| |
Collapse
|
9
|
Renzi P, Azzi E, Bessone E, Ghigo G, Parisotto S, Pellegrino F, Deagostino A. Blue light enhanced Heck arylation at room temperature applied to allenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01631h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A blue light enhanced synthesis of 2-vinyl pirrolidines and piperidines through a domino Heck arylation–cyclisation applied to allenyl amines is described. Essential is the role of the light in the aryl migration in the carbo-palladation step.
Collapse
Affiliation(s)
- Polyssena Renzi
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Emanuele Azzi
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Enrico Bessone
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Giovanni Ghigo
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Stefano Parisotto
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Francesco Pellegrino
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7, 10125 Torino, Italy
| |
Collapse
|
10
|
Shirangi HS, Varasteh Moradi A, Ahmadi Golsefidi M, Hossaini Z, Jalilian HR. Fe
3
O
4
/CuO/ZnO@MWCNT MNCs as an efficient organometallic nanocatalyst promoted synthesis of new 1,2,4‐triazolpyrimidoazepine derivatives: Investigation of antioxidant and antimicrobial activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Zare Davijani N, Kia-Kojoori R, Abdolmohammadi S, Sadegh-Samiei S. Employing of Fe 3O 4/CuO/ZnO@MWCNT MNCs in the solvent-free synthesis of new cyanopyrroloazepine derivatives and investigation of biological activity. Mol Divers 2021; 26:2121-2134. [PMID: 34860313 DOI: 10.1007/s11030-021-10319-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
In this research, we synthesized the Fe3O4/CuO/ZnO@MWCNT magnetic nanocomposites using water extract of Petasites hybridus rhizome, and the high performance of synthesized catalyst was confirmed by using in the solvent-free multicomponent reactions of isatoic anhydride, N-methylimidazole, alkyl bromides, activated acetylenic compounds and 2-aminoacetonitrile at ambient temperature for the production of new cyanopyrroloazepine derivatives in high yields. This catalyst could be used several times in these reactions and have main role in the yield of product. The synthesized cyanopyrroloazepines have NH groups in their structure and for this reason have good antioxidant activity. Also, employing Gram-positive and Gram-negative bacteria in the disk diffusion procedure confirmed some cyanopyrroloazepines antimicrobial effect. The results showed that synthesized cyanopyrroloazepine prevented the bacterial growth. This used process for preparation of new cyanopyrroloazepine has some improvements such as low reaction time, product with high yields, simple separation of catalyst and products.
Collapse
Affiliation(s)
- Neda Zare Davijani
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
| | - Reza Kia-Kojoori
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran.
| | - Shahrzad Abdolmohammadi
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
| | - Sepehr Sadegh-Samiei
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
| |
Collapse
|
12
|
Haider V, Kreuzer V, Tiffner M, Spingler B, Waser M. Ammonium Salt-Catalyzed Ring-Opening of Aryl-Aziridines with β-Keto Esters. European J Org Chem 2020; 2020:5173-5177. [PMID: 32982577 PMCID: PMC7508174 DOI: 10.1002/ejoc.202000916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 02/03/2023]
Abstract
We herein report an ammonium salt-catalyzed protocol for the regioselective ring opening of aryl-aziridines with β-keto esters. The reaction gives access to a variety of highly functionalized target molecules with two consecutive stereo-genic centers and can be rendered enantioselective (up to e.r. = 91:9) by using bifunctional chiral ammonium salt catalysts.
Collapse
Affiliation(s)
- Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Viktoria Kreuzer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Maximilian Tiffner
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
13
|
|
14
|
Kiss L, Ouchakour L, Ábrahámi RA, Nonn M. Stereocontrolled Synthesis of Functionalized Azaheterocycles from Carbocycles through Oxidative Ring Opening/Reductive Ring Closing Protocols. CHEM REC 2019; 20:120-141. [PMID: 31250972 DOI: 10.1002/tcr.201900025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Fluorine-containing organic scaffolds are of significant interest in medicinal chemistry. The incorporation of fluorine into biomolecules can lead to remarkable changes in their physical, chemical, and biological properties. There are already many drugs on the market, which contain at least one fluorine atom. Saturated functionalized azaheterocycles as bioactive substances have gained increasing attention in pharmaceutical chemistry. Due to the high biorelevance of organofluorine molecules and the importance of N-heterocyclic compounds, selective stereocontrolled procedures to the access of new fluorine-containing saturated N-heterocycles are considered to be a hot research topic. This account summarizes the synthesis of functionalized and fluorine-containing saturated azaheterocycles starting from functionalized cycloalkenes and based on oxidative ring cleavage of diol intermediates followed by ring expansion with reductive amination.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Lamiaa Ouchakour
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Renáta A Ábrahámi
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| |
Collapse
|
15
|
Kaku H, Tsunoda T, Sonoda Y, Hishida H, Taniguchi Y, Kubo A, Hamaguchi T, Horikawa M, Inai M, Kitamura K. Piperidine and Azetidine Formation by Direct Cyclization of Diols with N-Nonsubstituted Sulfonamide under the Mitsunobu Conditions Utilizing (Cyanomethylene)tributylphosphorane (CMBP) and Its Application to the Synthesis of Lupinine. HETEROCYCLES 2019. [DOI: 10.3987/com-19-14171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Fraga-Timiraos AB, Francés-Monerris A, Rodríguez-Muñiz GM, Navarrete-Miguel M, Miranda MA, Roca-Sanjuán D, Lhiaubet-Vallet V. Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer. Chemistry 2018; 24:15346-15354. [PMID: 30053323 DOI: 10.1002/chem.201803298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/16/2022]
Abstract
Azetidines are interesting compounds in medicine and chemistry as bioactive scaffolds and synthetic intermediates. However, photochemical processes involved in the generation and fate of azetidine-derived radical ions have scarcely been reported. In this context, the photoreduction of this four-membered heterocycle might be relevant in connection with the DNA (6-4) photoproduct obtained from photolyase. Herein, a stable azabipyrimidinic azetidine (AZTm ), obtained from cycloaddition between thymine and 6-azauracil units, is considered to be an interesting model of the proposed azetidine-like intermediate. Hence, its photoreduction and photo-oxidation are thoroughly investigated through a multifaceted approach, including spectroscopic, analytical, and electrochemical studies, complemented by CASPT2 and DFT calculations. Both injection and removal of an electron result in the formation of radical ions, which evolve towards repaired thymine and azauracil units. Whereas photoreduction energetics are similar to those of the cyclobutane thymine dimers, photo-oxidation is clearly more favorable in the azetidine. Ring opening occurs with relatively low activation barriers (<13 kcal mol-1 ) and the process is clearly exergonic for photoreduction. In general, a good correlation has been observed between the experimental results and theoretical calculations, which has allowed a synergic understanding of the phenomenon.
Collapse
Affiliation(s)
- Ana B Fraga-Timiraos
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Antonio Francés-Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT), Université de Lorraine, CNRS, 54000, Nancy, France
| | - Gemma M Rodríguez-Muñiz
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Miriam Navarrete-Miguel
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| |
Collapse
|
18
|
Masson G, Rioton S, Gomez Pardo D, Cossy J. Access to Enantio-enriched Substituted α-Trifluoromethyl Azepanes from l-Proline. Org Lett 2018; 20:5019-5022. [DOI: 10.1021/acs.orglett.8b02167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guillaume Masson
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL University, 10 rue Vauquelin, Paris 75231 Cedex 05, France
| | - Sarah Rioton
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL University, 10 rue Vauquelin, Paris 75231 Cedex 05, France
| | - Domingo Gomez Pardo
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL University, 10 rue Vauquelin, Paris 75231 Cedex 05, France
| | - Janine Cossy
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL University, 10 rue Vauquelin, Paris 75231 Cedex 05, France
| |
Collapse
|