1
|
Wang L, Yang YP, Tian Y, Huang SC, Ruan Y, Wen CN, Liu M, Ma BJ. Purification and characterization of two non-starch polysaccharides from bulbils of Dioscorea opposita Thunb. 'Tiegun' and their antioxidant and hypoglycemic activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40276989 DOI: 10.1002/jsfa.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Dioscorea opposita Thunb. cv. 'Tiegun' has substantial agricultural and economic value. Its underground tubers are used widely in food and traditional medicine but the bulbils - small globular structures in the leaf axils - are frequently overlooked and discarded. This wastes biological resources and reduces overall plant productivity. RESULTS To address this, subcritical water extraction was applied to extract substances from the bulbils, followed by separation and purification. As a result, two non-starch polysaccharide components, DBP1 and DBP2, were obtained, with extraction rates of 2.25% and 0.85% respectively. Subsequent research on their properties and activity showed that DBP1 (21.9 kDa) was a neutral polysaccharide mainly made of Gal and Glc, and DBP2 (109.8 kDa) was an acidic polysaccharide composed of GalA and Gal. Due to the higher yield of DBP1, its structure was studied in greater depth. Methylation experiments indicated that its main chain consisted of 1,4-Galp and 1,4,6-Glcp glycosidic bonds with branch points, consistent with nuclear magnetic resonance (NMR) results. Scanning electron microscopy revealed that DBP1 and DBP2 had distinct filamentous structures yet similar spherical morphologies. Fourier transform infrared spectroscopy and thermal analysis were used to study their functional groups and thermal stability. In activity tests, DBP1 and DBP2 both showed antioxidant activity and could inhibit α-glucosidase and α-amylase, demonstrating hypoglycemic activity. CONCLUSION In conclusion, DBP1 and DBP2, two non-starch polysaccharides, showed good antioxidant and hypoglycemic effects. They can be used as raw materials for functional foods and drugs and merit further development. Maximizing bulbil utilization promotes green, sustainable agriculture and prevents resource waste. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Wang
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yu-Peng Yang
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yi Tian
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuan Ruan
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chun-Nan Wen
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Miao Liu
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Bing-Ji Ma
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Zang Z, Gong X, Cao L, Ni H, Chang H. Resistant starch from yam: Preparation, nutrition, properties and applications in the food sector. Int J Biol Macromol 2024; 273:133087. [PMID: 38871109 DOI: 10.1016/j.ijbiomac.2024.133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Yam is a significant staple food and starch source, particularly in tropical and subtropical regions, holding the fourth position among the world's top ten tuber crops. Yam tubers are rich in essential nutrients and a diverse range of beneficial plant compounds, which contribute to their multifaceted beneficial functions. Furthermore, the abundant starch and resistant starch (RS) content in yam can fulfil the market demand for RS. The inherent and modified properties of yam starch and RS make them versatile ingredients for a wide range of food products, with the potential to become one of the most cost-effective raw materials in the food industry. In recent years, research on yam RS has experienced progressive expansion. This article provides a comprehensive summary of the latest research findings on yam starch and its RS, elucidating the feasibility of commercial RS production and the technology's impact on the physical and chemical properties of starch. Yam has emerged as a promising reservoir of tuber starch for sustainable RS production, with thermal, chemical, enzymatic and combination treatments proving to be effective manufacturing procedures for RS. The adaptability of yam RS allows for a wide range of food applications.
Collapse
Affiliation(s)
- Ziyan Zang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Xiaoxiao Gong
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Linhai Cao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hongxia Ni
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
3
|
A 1H NMR-based metabolomics approach for the identification of differential metabolites between Chinese yam tubers and yam bulbils. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Bai Y, Zhou Y, Zhang R, Chen Y, Wang F, Zhang M. Gut microbial fermentation promotes the intestinal anti-inflammatory activity of Chinese yam polysaccharides. Food Chem 2023; 402:134003. [DOI: 10.1016/j.foodchem.2022.134003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022]
|
5
|
Overexpression of DoBAM1 from Yam ( Dioscorea opposita Thunb.) Enhances Cold Tolerance in Transgenic Tobacco. Genes (Basel) 2022; 13:genes13122296. [PMID: 36553563 PMCID: PMC9777697 DOI: 10.3390/genes13122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
β-amylase (BAM) plays an important role in plant development and response to abiotic stresses. In this study, 5 DoBAM members were identified in yam (Dioscorea opposita Thunb.). A novel β-amylase gene BAM1, (named DoBAM1), was isolated from yam varieties Bikeqi and Dahechangyu. The open reading frame (ORF) of DoBAM1 is 2806 bp and encodes 543 amino acids. Subcellular localization analysis indicates that DoBAM1 localizes to the cell membrane and cytoplasm. In the yam variety Dahechangyu, the starch content, β-amylase activity, and expression of DoBAM1 were characterized and found to all be higher than in Bikeqi. DoBAM1 overexpression in tobacco is shown to promote the accumulation of soluble sugar and chlorophyll content and to increase the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and β-amylase. Under cold treatment, we observed the induced upregulation of DoBAM1 and lower starch content and malondialdehyde (MDA) accumulation than in WT plants. In conclusion, these results demonstrate that DoBAM1 overexpression plays an advanced role in cold tolerance, at least in part by raising the levels of soluble sugars that are capable of acting as osmolytes or antioxidants.
Collapse
|
6
|
Zou J, Li Y, Wang F, Su X, Li Q. Relationship between structure and functional properties of starch from different cassava (Manihot esculenta Crantz) and yam (Dioscorea opposita Thunb) cultivars used for food and industrial processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Akarsha B, Shetty K, Krishnakumar G. Isolation, partial characterization and in vitro digestion of starch from Ariopsis peltata and Lagenandra toxicaria tuber. Heliyon 2022; 8:e11089. [PMID: 36281421 PMCID: PMC9586894 DOI: 10.1016/j.heliyon.2022.e11089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
The starch from two aroid tuber viz. Ariopsis peltata and Lagenandra toxicaria were isolated and evaluated for their morphological, physical and chemical properties. The tubers of these plants are used as food and medicine by the indigenous communities. The starch yield from A. peltata tuber was 25 ± 1.7% with an amylose content of 10 ± 0.9%, while the tuber of L. toxicaria contained 28 ± 6.5% starch with 15 ± 0.5% of apparent amylose in it. The starch isolated from both the tubers was highly pure (99%) starch exhibiting an A-type X-ray diffraction pattern. The starch granules of L. toxicaria were of various shapes and exhibited a smooth surface without any cleft or break. While the starch granules of A. peltata were spherical with smooth surface, as well as rough surface. The breaks and clefts were apparent on the rough-surfaced granules. The gelatinization temperature range for A. peltata and L. toxicaria starch is approximately 23 °C and 19 °C respectively. A. peltata starch showed higher thermal stability compared to L. toxicaria starch and either of the starch was rapidly digestible as evident from in vitro digestion study. The physicochemical properties of both the starches render them stable to withstand extreme processing. Besides they also mimic simple sugar in digestibility. So it can be utilized as a substitute for simple sugars in brewing and pharmaceutical industries.
Collapse
|
8
|
ESTIASIH T, KULIAHSARI DE, MARTATI E, AHMADI K. Cyanogenic compounds removal and characteristics of non- and pregelatinized traditional detoxified wild yam (Dioscorea hispida) tuber flour. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Kgs AHMADI
- Tribhuwana Tunggadewi University, Indonesia
| |
Collapse
|
9
|
Miłek J. Determination of Activation Energies and the Optimum Temperatures of Hydrolysis of Starch by α-Amylase from Porcine Pancreas. Molecules 2021; 26:4117. [PMID: 34299392 PMCID: PMC8306296 DOI: 10.3390/molecules26144117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The present paper reports the determination of the activation energies and the optimum temperatures of starch hydrolysis by porcine pancreas α-amylase. The parameters were estimated based on the literature data on the activity curves versus temperature for starch hydrolysis by α-amylase from porcine pancreas. It was assumed that both the hydrolysis reaction process and the deactivation process of α-amylase were first-order reactions by the enzyme concentration. A mathematical model describing the effect of temperature on porcine pancreas α-amylase activity was used. The determine deactivation energies Ea were from 19.82 ± 7.22 kJ/mol to 128.80 ± 9.27 kJ/mol, the obtained optimum temperatures Topt were in the range from 311.06 ± 1.10 K to 326.52 ± 1.75 K. In turn, the values of deactivation energies Ed has been noted in the range from 123.57 ± 14.17 kJ/mol to 209.37 ± 5.17 kJ/mol. The present study is related to the starch hydrolysis by α-amylase. In the industry, the obtained results the values Ea, Ed, Topt can be used to design and optimize starch hydrolysis by α-amylase porcine pancreas. The obtained results might also find application in research on the pharmaceutical preparations used to treat pancreatic insufficiency or prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Justyna Miłek
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Technology and Engineering, University of Science and Technology in Bydgoszcz, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
10
|
|
11
|
Physicochemical and structural properties of low-amylose Chinese yam (Dioscorea opposita Thunb.) starches. Int J Biol Macromol 2020; 164:427-433. [DOI: 10.1016/j.ijbiomac.2020.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
|
12
|
Huang Z, Brennan CS, Mohan MS, Stipkovits L, Zheng H, Kulasiri D, Guan W, Zhao H, Liu J. Milk lipid
in vitro
digestibility in wheat, corn and rice starch hydrogels. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zhiguang Huang
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
- Riddet Research Institute Palmerston North 4442 New Zealand
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
- Riddet Research Institute Palmerston North 4442 New Zealand
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Maneesha S. Mohan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Letitia Stipkovits
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Haotian Zheng
- Department of Food, Bioprocessing and Nutrition Sciences Southeast Dairy Foods Research Center Raleigh NC 27695 USA
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| |
Collapse
|
13
|
Epping J, Laibach N. An underutilized orphan tuber crop-Chinese yam : a review. PLANTA 2020; 252:58. [PMID: 32959173 PMCID: PMC7505826 DOI: 10.1007/s00425-020-03458-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
MAIN CONCLUSION The diversification of food crops can improve our diets and address the effects of climate change, and in this context the orphan crop Chinese yam shows significant potential as a functional food. As the effects of climate change become increasingly visible even in temperate regions, there is an urgent need to diversify our crops in order to address hunger and malnutrition. This has led to the re-evaluation of neglected species such as Chinese yam (Dioscorea polystachya Turcz.), which has been cultivated for centuries in East Asia as a food crop and as a widely-used ingredient in traditional Chinese medicine. The tubers are rich in nutrients, but also contain bioactive metabolites such as resistant starches, steroidal sapogenins (like diosgenin), the storage protein dioscorin, and mucilage polysaccharides. These health-promoting products can help to prevent cardiovascular disease, diabetes, and disorders of the gut microbiome. Whereas most edible yams are tropical species, Chinese yam could be cultivated widely in Europe and other temperate regions to take advantage of its nutritional and bioactive properties. However, this is a laborious process and agronomic knowledge is fragmented. The underground tubers contain most of the starch, but are vulnerable to breaking and thus difficult to harvest. Breeding to improve tuber shape is complex given the dioecious nature of the species, the mostly vegetative reproduction via bulbils, and the presence of more than 100 chromosomes. Protocols have yet to be established for in vitro cultivation and genetic transformation, which limits the scope of research. This article summarizes the sparse research landscape and evaluates the nutritional and medical applications of Chinese yam. By highlighting the potential of Chinese yam tubers, we aim to encourage the adoption of this orphan crop as a novel functional food.
Collapse
Affiliation(s)
- Janina Epping
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany.
| | - Natalie Laibach
- Institute for Food and Resource Economics, University of Bonn, Meckenheimer Allee 174, 53115, Bonn, Germany
| |
Collapse
|
14
|
Chen C, He B, Liu X, Ma X, Liu Y, Yao H, Zhang P, Yin J, Wei X, Koh H, Yang C, Xue H, Fang Z, Qiao Y. Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP1) regulates starch biosynthesis and seed development via heterotetramer formation in rice (Oryza sativa L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:83-95. [PMID: 31131526 PMCID: PMC6920184 DOI: 10.1111/pbi.13173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/03/2019] [Accepted: 05/14/2019] [Indexed: 05/07/2023]
Abstract
Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP1) reversibly converts fructose 6-phosphate and pyrophosphate to fructose 1, 6-bisphosphate and orthophosphate during glycolysis, and has diverse functions in plants. However, mechanisms underlying the regulation of starch metabolism by PFP1 remain elusive. This study addressed the function of PFP1 in rice floury endosperm and defective grain filling. Compared with the wild type, pfp1-3 exhibited remarkably low grain weight and starch content, significantly increased protein and lipid content, and altered starch physicochemical properties and changes in embryo development. Map-based cloning revealed that pfp1-3 is a novel allele and encodes the regulatory β-subunit of PFP1 (PFP1β). Measurement of nicotinamide adenine dinucleotide (NAD+) showed that mutation of PFP1β markedly decreased its enzyme activity. PFP1β and three of four putative catalytic α-subunits of PFP1, PFP1α1, PFP1α2, and PFP1α4, interacted with each other to form a heterotetramer. Additionally, PFP1β, PFP1α1 and PFP1α2 also formed homodimers. Furthermore, transcriptome analysis revealed that mutation of PFP1β significantly altered expression of many essential enzymes in starch biosynthesis pathways. Concentrations of multiple lipid and glycolytic intermediates and trehalose metabolites were elevated in pfp1-3 endosperm, indicating that PFP1 modulates endosperm metabolism, potentially through reversible adjustments to metabolic fluxes. Taken together, these findings provide new insights into seed endosperm development and starch biosynthesis and will help in the breeding of rice cultivars with higher grain yield and quality.
Collapse
Affiliation(s)
- Chen Chen
- College of AgricultureYangtze UniversityJingzhouChina
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Bingshu He
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
- Institute of Industrial CropsSongyuan Academy of Agricultural SciencesSongyuanChina
| | - Xingxun Liu
- Key Laboratory of Grains and Oils Quality Control and ProcessingCollege of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Yujie Liu
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Hong‐Yan Yao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Zhang
- College of AgricultureYangtze UniversityJingzhouChina
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Junliang Yin
- College of AgricultureYangtze UniversityJingzhouChina
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Hee‐Jong Koh
- Department of Plant ScienceCollege of Agriculture and Life Sciences, and Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
| | - Chen Yang
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhengwu Fang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
15
|
Guo K, Zhang L, Bian X, Cao Q, Wei C. A-, B- and C-type starch granules coexist in root tuber of sweet potato. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Qian SY, Tang MQ, Gao Q, Wang XW, Zhang JW, Tanokura M, Xue YL. Effects of different modification methods on the physicochemical and rheological properties of Chinese yam (Dioscorea opposita Thunb.) starch. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Kumoro AC, Retnowati DS, Ratnawati R, Widiyanti M. Estimation of aqueous solubility of starch from various botanical sources using Flory Huggins theory approach. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1691539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Andri Cahyo Kumoro
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia
- Institute of Food and Remedies Bio-Materials, Universitas Diponegoro, Semarang, Indonesia
| | - Diah Susetyo Retnowati
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia
| | - Ratnawati Ratnawati
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia
| | - Marissa Widiyanti
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia
| |
Collapse
|
18
|
Zhang P, Wang L, Qian Y, Wang X, Zhang S, Chang J, Ruan Y, Ma B. Influences of Extraction Methods on Physicochemical and Functional Characteristics of Three New Bulbil Starches from Dioscorea opposita Thunb. cv. Tiegun. Molecules 2019; 24:E2232. [PMID: 31207987 PMCID: PMC6630637 DOI: 10.3390/molecules24122232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022] Open
Abstract
Starches from the bulbils of Dioscoreae opposita Thunb. cv. Tiegun were isolated by aqueous steeping (SBS), enzyme extraction (EBS), and alkaline extraction (ABS) methods, respectively. The physicochemical, mineral composition, thermal and morphological characteristics of these starches were investigated. The starch granules were oval, spherical and kidney-shaped and its crystal type is a mixture of A-type and B-type patterns. The starches having larger average granule size showed more amylose and phosphorus contents than those with smaller average granule size. Differential scanning calorimetry (DSC) showed that the SBS had an endothermic transition ranging from 65.8 °C to 76.3 °C with an enthalpy of 2.0 J/g. The endothermic transitions of ABS and EBS showed the regions of 67.9 °C to 73.0 °C, and 66.8 °C to 82.0 °C, respectively. The gelationization enthalpies of ABS and EBS were 13.8 and 11.5 J/g, respectively. Additionally, ABS presented greater clarity in comparison with EBS and SBS. Pasting properties indicated that ABS had the highest peak viscosity, breakdown, but SBS had the lowest trough, final viscosity, setback, and pasting temperature. Generally, ABS and EBS could be used as food thickener or frozen food additives. SBS and EBS were potential technological alternatives in quality preservation of frozen starch-based products and other industrial applications.
Collapse
Affiliation(s)
- Pengzhan Zhang
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou 450001, China.
| | - Li Wang
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou 450001, China.
| | - Yanyan Qian
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou 450001, China.
| | - Xuguang Wang
- Baiyunmugang Biological Technology Company, Dengfeng 452471, China.
| | - Shaoning Zhang
- Baiyunmugang Biological Technology Company, Dengfeng 452471, China.
| | - Jiping Chang
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou 450001, China.
| | - Yuan Ruan
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou 450001, China.
| | - Bingji Ma
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Zhang L, Liu T, Hu G, Guo K, Wei C. Comparison of Physicochemical Properties of Starches from Nine Chinese Chestnut Varieties. Molecules 2018; 23:molecules23123248. [PMID: 30544638 PMCID: PMC6321317 DOI: 10.3390/molecules23123248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023] Open
Abstract
Chestnut is a popular food in many countries and is also an important starch source. In previous studies, physicochemical properties of starches have been compared among different Chinese chestnut varieties growing under different conditions. In this study, nine Chinese chestnut varieties from the same farm were investigated for starch physicochemical properties to exclude the effects of growing conditions. The dry kernels had starch contents from 42.7 to 49.3%. Starches from different varieties had similar morphologies and exhibited round, oval, ellipsoidal, and polygonal shapes with a central hilum and smooth surface. Starch had bimodal size distribution and the volume-weighted mean diameter ranged from 7.2 to 8.2 μm among nine varieties. The starches had apparent amylose contents from 23.8 to 27.3% but exhibited the same C-type crystalline structure and similar relative crystallinity, ordered degree, and lamellar structure. The gelatinization onset, peak, and conclusion temperatures ranged from 60.4 to 63.9 °C, from 64.8 to 68.3 °C, and from 70.5 to 74.5 °C, respectively, among nine starches; and the peak, hot, breakdown, final, and setback viscosities ranged from 5524 to 6505 mPa s, from 3042 to 3616 mPa s, from 2205 to 2954 mPa s, from 4378 to 4942 mPa s, and from 1326 to 1788 mPa s, respectively. The rapidly digestible starch, slowly digestible starch, and resistant starch ranged from 2.6 to 3.7%, from 5.7 to 12.7%, and from 84.4 to 90.7%, respectively, for native starch, and from 79.6 to 89.5%, from 1.3 to 3.8%, and from 7.1 to 17.4%, respectively, for gelatinized starch.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Tianxiang Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Guanglong Hu
- Institute of Forest and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China.
| | - Ke Guo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|