1
|
Elbadawi M, Boulos JC, Dawood M, Zhou M, Gul W, ElSohly MA, Klauck SM, Efferth T. The Novel Artemisinin Dimer Isoniazide ELI-XXIII-98-2 Induces c-MYC Inhibition, DNA Damage, and Autophagy in Leukemia Cells. Pharmaceutics 2023; 15:1107. [PMID: 37111592 PMCID: PMC10144546 DOI: 10.3390/pharmaceutics15041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The proto-oncogenic transcription factor c-MYC plays a pivotal role in the development of tumorigenesis, cellular proliferation, and the control of cell death. Its expression is frequently altered in many cancer types, including hematological malignancies such as leukemia. The dimer isoniazide ELI-XXIII-98-2 is a derivative of the natural product artemisinin, with two artemisinin molecules and an isoniazide moiety as a linker in between them. In this study, we aimed to study the anticancer activity and the molecular mechanisms of this dimer molecule in drug-sensitive CCRF-CEM leukemia cells and their corresponding multidrug-resistant CEM/ADR5000 sub-line. The growth inhibitory activity was studied using the resazurin assay. To reveal the molecular mechanisms underlying the growth inhibitory activity, we performed in silico molecular docking, followed by several in vitro approaches such as the MYC reporter assay, microscale thermophoresis, microarray analyses, immunoblotting, qPCR, and comet assay. The artemisinin dimer isoniazide showed a potent growth inhibitory activity in CCRF-CEM but a 12-fold cross-resistance in multidrug-resistant CEM/ADR5000 cells. The molecular docking of artemisinin dimer isoniazide with c-MYC revealed a good binding (lowest binding energy of -9.84 ± 0.3 kcal/mol) and a predicted inhibition constant (pKi) of 66.46 ± 29.5 nM, which was confirmed by microscale thermophoresis and MYC reporter cell assays. Furthermore, c-MYC expression was downregulated by this compound in microarray hybridization and Western blotting analyses. Finally, the artemisinin dimer isoniazide modulated the expression of autophagy markers (LC3B and p62) and the DNA damage marker pH2AX, indicating the stimulation of both autophagy and DNA damage, respectively. Additionally, DNA double-strand breaks were observed in the alkaline comet assay. DNA damage, apoptosis, and autophagy induction could be attributed to the inhibition of c-MYC by ELI-XXIII-98-2.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Joelle C. Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
- Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum 12702, Sudan
| | - Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Waseem Gul
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA
| | - Mahmoud A. ElSohly
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA
| | - Sabine M. Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| |
Collapse
|
2
|
Zhang X, Li N, Zhang G, Li J, Liu Y, Wang M, Ren X. Nano Strategies for Artemisinin Derivatives to Enhance Reverse Efficiency of Multidrug Resistance in Breast Cancer. Curr Pharm Des 2023; 29:3458-3466. [PMID: 38270162 DOI: 10.2174/0113816128282248231205105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Artemisinin (ART) has been found to exert anti-tumor activity by regulating the cell cycle, inducing apoptosis, inhibiting angiogenesis and tumor invasion and metastasis. Its derivatives (ARTs) can regulate the expression of drug-resistant proteins and reverse the multidrug resistance (MDR) of tumor cells by inhibiting intracellular drug efflux, inducing apoptosis and autophagy of tumor cells, thus enhancing the sensitivity of tumor cells to chemotherapy and radiotherapy. Recent studies have shown that nanodrugs play an important role in the diagnosis and treatment of cancer, which can effectively solve the shortcomings of poor hydrophilicity and low bioavailability of ARTs in the human body, prolong the in vivo circulation time, improve the targeting of drugs (including tumor tissues or specific organelles), and control the release of drugs in target tissues, thereby reducing the side effect. This review systematically summarized the latest research progress of nano-strategies of ARTs to enhance the efficiency of MDR reversal in breast cancer (BC) from the following two aspects: (1) Chemicals encapsulated in nanomaterials based on innovative anti-proliferation mechanism: non-ABC transporter receptor candidate related to ferroptosis (dihydroartemisinin/DHA analogs). (2) Combination therapy strategy of nanomedicine (drug-drug combination therapy, drug-gene combination, and chemical-physical therapy). Self-assembled nano-delivery systems enhance therapeutic efficacy through increased drug loading, rapid reactive release, optimized delivery sequence, and realization of cascade-increasing effects. New nanotechnology methods must be designed for specific delivery routines to achieve targeting administration and overcome MDR without affecting normal cells. The significance of this review is to expect that ART and ARTs can be widely used in clinical practice. In the future, nanotechnology can help people to treat multidrug resistance of breast cancer more accurately and efficiently.
Collapse
Affiliation(s)
- Xueyan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guoqin Zhang
- Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiayang Li
- Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- Haihe Laboratory of Modern Chinese Medicine, Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Mai A, Ye S, Tu J, Gao J, Kang Z, Yao Q, Ting W. Thymoquinone induces apoptosis in temozolomide-resistant glioblastoma cells via the p38 mitogen-activated protein kinase signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:90-100. [PMID: 36176197 PMCID: PMC10087852 DOI: 10.1002/tox.23664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Temozolomide (TMZ) can cross the blood-brain barrier (BBB) and deliver methyl groups to the purine (guanine) bases of DNA, leading to mispairing during DNA replication and subsequent cell death. However, increased expression of the repair enzyme methyl guanine methyltransferase (MGMT), which removes methyl groups from purine bases, counteracts methylation by TMZ. We evaluated the anticancer potential of thymoquinone (TQ), a hydrophobic flavonoid that inhibits resistance and induces apoptosis in various cancer cells, both in vitro and in vivo. In vitro experiments showed that compared with the Hs683 and M059J cell lines, U251 cells were more sensitive to TMZ. Compared to U251 cells, U251R cells, a TMZ drug-resistant strain established in this study, are characterized by increased expression of phosphorylated extracellular signal-regulated kinase (p-ERK) and MGMT. TQ treatments induced apoptosis in all cell lines. The p38 mitogen-activated protein kinase signal pathway was mainly activated in U251 and U251R cells; however, p-ERK and MGMT upregulation could not suppress TQ effects. Furthermore, si-p38 pretreatment of U251R cells in TQ treatments inhibited cell apoptosis. We speculate that TQ contributed to the phosphorylation and activation of p38, but not of ERK-induced apoptosis (irrespective of TMZ resistance). In vivo, U251R-derived tumors subcutaneously inoculated in nude mice exhibited significant tumor volume reduction after TQ or TQ + TMZ cotreatments. High-performance liquid chromatography assay confirmed the presence of TQ in murine brain tissues. Our findings demonstrate that TQ can effectively cross the BBB and function alone or in combination with TMZ to treat glioblastoma.
Collapse
Affiliation(s)
- Ai Mai
- Biomedicine Research CentreThe Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Shu‐Wen Ye
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Jia‐Yu Tu
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Jun Gao
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Zhan‐Fang Kang
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Qian‐Ming Yao
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
- Department of NeurosurgeryAffiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Wei‐Jen Ting
- Department of NeurosurgeryThe Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Novel artemisinin derivative FO8643 with anti-angiogenic activity inhibits growth and migration of cancer cells via VEGFR2 signaling. Eur J Pharmacol 2022; 930:175158. [PMID: 35878807 DOI: 10.1016/j.ejphar.2022.175158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR2) is widely recognized as a key effector in angiogenesis and cancer progression and has been considered a critical target for the development of anti-cancer drugs. Artemisinin (ARS) and its derivatives exert profound efficacy in treating not only malaria but also cancer. As a novel ARS-type compound, FO8643 caused significant suppression of the growth of a panel of cancer cells, including both solid and hematologic malignancies. In CCRF-CEM leukemia cells, FO8643 dramatically inhibited cell proliferation coupled with increased apoptosis and cell cycle arrest. Additionally, FO8643 restrained cell migration in the 2D wound healing assay as well as in a 3D spheroid model of human hepatocellular carcinoma HUH-7 cells. Importantly, SwissTargetPrediction predicted VEGFR2 as an underlying target for FO8643. Molecular docking simulation further indicated that FO8643 forms hydrogen bonds and hydrophobic interactions within the VEGFR2 kinase domain. Moreover, FO8643 directly inhibited VEGFR2 kinase activity and its downstream action including MAPK and PI3K/Akt signaling pathways in HUH-7 cells. Encouragingly, FO8643 decreased angiogenesis in the chorioallantoic membrane assay in vivo. Collectively, FO8643 is a novel ARS-type compound exerting potential VEGFR2 inhibition. FO8643 may be a viable drug candidate in cancer therapy.
Collapse
|
5
|
Atayik MC, Çakatay U. Mitochondria-targeted senotherapeutic interventions. Biogerontology 2022; 23:401-423. [PMID: 35781579 DOI: 10.1007/s10522-022-09973-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Healthy aging is the art of balancing a delicate scale. On one side of the scale, there are the factors that make life difficult with aging, and on the other side are the products of human effort against these factors. The most important factors that make the life difficult with aging are age-related disorders. Developing senotherapeutic strategies may bring effective solutions for the sufferers of age-related disorders. Mitochondrial dysfunction comes first in elucidating the pathogenesis of age-related disorders and presenting appropriate treatment options. Although it has been widely accepted that mitochondrial dysfunction is a common characteristic of cellular senescence, it still remains unclear why dysfunctional mitochondria occupy a central position in the development senescence-associated secretory phenotype (SASP) related to age-related disorders. Mitochondrial dysfunction and SASP-related disease progression are closely interlinked to weaken immunity which is a common phenomenon in aging. A group of substances known as senotherapeutics targeted to senescent cells can be classified into two main groups: senolytics (kill senescent cells) and senomorphics/senostatics (suppress their SASP secretions) in order to extend health lifespan and potentially lifespan. As mitochondria are also closely related to the survival of senescent cells, using either mitochondria-targeted senolytic or redox modulator senomorphic strategies may help us to solve the complex problems with the detrimental consequences of cellular senescence. Killing of senescent cells and/or ameliorate their SASP-related negative effects are currently considered to be effective mitochondria-directed gerotherapeutic approaches for fighting against age-related disorders.
Collapse
Affiliation(s)
- Mehmet Can Atayik
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
6
|
Artemisinin derivative FO-ARS-123 as a novel VEGFR2 inhibitor suppresses angiogenesis, cell migration, and invasion. Chem Biol Interact 2022; 365:110062. [DOI: 10.1016/j.cbi.2022.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
|
7
|
Zhang S, Yi C, Li WW, Luo Y, Wu YZ, Ling HB. The current scenario on anticancer activity of artemisinin metal complexes, hybrids, and dimers. Arch Pharm (Weinheim) 2022; 355:e2200086. [PMID: 35484335 DOI: 10.1002/ardp.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer, the most significant cause of morbidity and mortality, has already posed a heavy burden on health care systems globally. In recent years, cancer treatment has made a significant breakthrough, but cancer cells inevitably acquire resistance, and the efficacy of the treatment is greatly reduced as the tumor progresses. To overcome the above issues, novel chemotherapeutics are needed urgently. Artemisinin and its derivatives-sesquiterpene lactone compounds possessing a unique peroxy bridge moiety-exhibit excellent safety and tolerability profiles. Mechanistically, artemisinin derivatives can promote cancer cell apoptosis, induce cell cycle arrest and autophagy, and inhibit cancer cell invasion and migration. Accordingly, artemisinin derivatives demonstrate promising anticancer efficacy both in vitro and in vivo, and even in clinical Phase I/II trials. The purpose of the present review article is to provide an emphasis on the current scenario (January 2017-January 2022) of artemisinin derivatives with potential anticancer activity, inclusive of artemisinin metal complexes, hybrids, and dimers. The structure-activity relationships and mechanisms of action are also discussed to facilitate the further rational design of more effective candidates.
Collapse
Affiliation(s)
- Shu Zhang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Chuan Yi
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Wei-Wei Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yang Luo
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yi-Zhe Wu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Hai-Bo Ling
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
8
|
Artemisinin and Derivatives-Based Hybrid Compounds: Promising Therapeutics for the Treatment of Cancer and Malaria. Molecules 2021; 26:molecules26247521. [PMID: 34946603 PMCID: PMC8707619 DOI: 10.3390/molecules26247521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023] Open
Abstract
Cancer and malaria are major health conditions around the world despite many strategies and therapeutics available for their treatment. The most used strategy for the treatment of these diseases is the administration of therapeutic drugs, which suffer from several shortcomings. Some of the pharmacological limitations associated with these drugs are multi-drug resistance, drug toxicity, poor biocompatibility and bioavailability, and poor water solubility. The currently ongoing preclinical studies have demonstrated that combination therapy is a potent approach that can overcome some of the aforementioned limitations. Artemisinin and its derivatives have been reported to exhibit potent efficacy as anticancer and antimalarial agents. This review reports hybrid compounds containing artemisinin scaffolds and their derivatives with promising therapeutic effects for the treatment of cancer and malaria.
Collapse
|
9
|
Butt MS, Imran M, Imran A, Arshad MS, Saeed F, Gondal TA, Shariati MA, Gilani SA, Tufail T, Ahmad I, Rind NA, Mahomoodally MF, Islam S, Mehmood Z. Therapeutic perspective of thymoquinone: A mechanistic treatise. Food Sci Nutr 2021; 9:1792-1809. [PMID: 33747489 PMCID: PMC7958532 DOI: 10.1002/fsn3.2070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
The higher utilization of fruits and vegetables is well known to cure human maladies due to the presence of bioactive components. Among these compounds, thymoquinone, a monoterpene and significant constituent in the essential oil of Nigella sativa L., has attained attention by the researchers due to their pharmacologies perspectives such as prevention from cancer, antidiabetic and antiobesity, prevention from oxidative stress and cardioprotective disorder. Thymoquinone has been found to work as anticancer agent against different human and animal cancer stages including propagation, migration, and invasion. Thymoquinone as phytochemical also downregulated the Rac1 expression, mediated the miR-34a upregulation, and increased the levels of miR-34a through p53, as well as also regulated the pro- and antiapoptotic genes and decreased the phosphorylation of NF-κB and IKKα/β. In addition, thymoquinone also lowered the metastasis and ERK1/2 and PI3K activities. The present review article has been piled by adapting narrative review method and highlights the diverse aspects of thymoquinone such as hepatoprotective, anti-inflammatory, and antiaging through various pathways, and further utilization of this compound in diet has been proven effective against different types of cancers.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- Faculty of Food, Nutrition & Home SciencesNational Institute of Food Science and TechnologyUAFFaisalabadPakistan
| | - Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ali Imran
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Tanweer Aslam Gondal
- School of Exercise and NutritionFaculty of HealthDeakin UniversityBurwoodVic.Australia
| | | | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ishtiaque Ahmad
- Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Nadir Ali Rind
- Department of molecular Biology and GeneticsShaheed Benazir Bhutto UniversityShaheed BenazirabadPakistan
| | - Mohamad Fawzi Mahomoodally
- Department of Health SciencesFaculty of Medicine and Health SciencesUniversity of MauritiusRéduitMauritius
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| | - Zaffar Mehmood
- School of life SciencesForman Christian College (A Chartered University)LahorePakistan
| |
Collapse
|
10
|
Kavak E, Mutlu D, Ozok O, Arslan S, Kivrak A. Design, synthesis and pharmacological evaluation of novel Artemisinin-Thymol. Nat Prod Res 2021; 36:3511-3519. [PMID: 33416016 DOI: 10.1080/14786419.2020.1865954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A molecular hybridization of natural products is a new concept in drug discovery and having critical roles to design new molecules with improved biological properties. Hybrid molecules display higher biological activities when compared to the parent drugs. In the present study, two natural products (thymol and artemisinin (ART)) are used for the synthesis of new hybrid thymol-artemisinin. After characterization, the cytotoxic activity of ART-thymol was tested against different cancer cell lines and non-cancerous human cell line. ART-Thymol show the cytotoxic effect with EC50 values 70,96μM for HepG2, 97,31μM for LnCap, 6,03μM for Caco-2, 77,98μM for HeLa and 62,28μM for HEK293 cells, respectively. Moreover, ART-Thymol was checked for drug-likeness, and the kinase inhibitory activity. ART-Thymol is investigated by using molecular docking. The results of qPCR was indicated CDK2 and P38 were inhibited by ART-Thymol. These results improved that thymol-artemisinin may be new candidates as an anticancer agents.
Collapse
Affiliation(s)
- Emrah Kavak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Dogukan Mutlu
- Department of Biology, Faculty of Arts and Science, Pamukkale University, Denizli, Turkey
| | - Omruye Ozok
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey.,Department of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Arts and Science, Pamukkale University, Denizli, Turkey
| | - Arif Kivrak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| |
Collapse
|
11
|
Lu X, Efferth T. Repurposing of artemisinin-type drugs for the treatment of acute leukemia. Semin Cancer Biol 2021; 68:291-312. [DOI: 10.1016/j.semcancer.2020.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
|
12
|
Mancuso RI, Foglio MA, Olalla Saad ST. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother Pharmacol 2020; 87:1-22. [PMID: 33141328 DOI: 10.1007/s00280-020-04170-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Qinghaosu, known as artemisinin (ARS), has been for over two millennia, one of the most common herbs prescribed in traditional Chinese medicine (TCM). ARS was developed as an antimalarial drug and currently belongs to the established standard treatments of malaria as a combination therapy worldwide. In addition to the antimalarial bioactivity of ARS, anticancer activities have been shown both in vitro and in vivo. Like other natural products, ARS acts in a multi-specific manner also against hematological malignancies. The chemical structure of ARS is a sesquiterpene lactone, which contains an endoperoxide bridge essential for activity. The main mechanism of action of ARS and its derivatives (artesunate, dihydroartemisinin, artemether) toward leukemia, multiple myeloma, and lymphoma cells comprises oxidative stress response, inhibition of proliferation, induction of various types of cell death as apoptosis, autophagy, ferroptosis, inhibition of angiogenesis, and signal transducers, as NF-κB, MYC, amongst others. Therefore, new pharmaceutically active compounds, dimers, trimers, and hybrid molecules, could enhance the existing therapeutic alternatives in combating hematologic malignancies. Owing to the high potency and good tolerance without side effects of ARS-type drugs, combination therapies with standard chemotherapies could be applied in the future after further clinical trials in hematological malignancies.
Collapse
Affiliation(s)
- R I Mancuso
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil
| | - M A Foglio
- Faculty of Pharmaceutical Science, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - S T Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
13
|
Mosaddad SA, Beigi K, Doroodizadeh T, Haghnegahdar M, Golfeshan F, Ranjbar R, Tebyanian H. Therapeutic applications of herbal/synthetic/bio-drug in oral cancer: An update. Eur J Pharmacol 2020; 890:173657. [PMID: 33096111 DOI: 10.1016/j.ejphar.2020.173657] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Oral cancer, as one of the most prevalent and invasive cancers that invade local tissue, can cause metastasis, and have high mortality. In 2018, around 355,000 worldwide oral cancers occurred and resulted in 177,000 deaths. Estimates for the year 2020 include about 53,260 new cases added to previous year's cases, and the estimated death toll from this cancer in 2020 is about 10,750 deaths more than previous years. Despite recent advances in cancer diagnosis and treatment, unfortunately, 50% of people with cancer cannot be cured. Of course, it should be remembered that the type of treatment used greatly influences patient recovery. There are not many choices when it comes to treating oral cancer. Research efforts focusing on the discovery and evolution of innovative therapeutic approaches for oral cancer are essential. Such traditional methods of treating this type of cancer like surgery and chemotherapy, have evolved dramatically during the past thirty to forty years, but they continue to cause panic among patients due to their side effects. Therefore, it is necessary to study and use drugs that are less risky for the patient as well as to provide solutions to reduce chemotherapy-induced adverse events that prevent many therapeutic risks. As mentioned above, this study examines low-risk therapies such as herbal remedies, biological drugs, and synthetic drugs in the hope that they will be useful to physicians, researchers, and scientists around the world.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Beigi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Doroodizadeh
- Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Haghnegahdar
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Golfeshan
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Sampath Kumar HM, Herrmann L, Tsogoeva SB. Structural hybridization as a facile approach to new drug candidates. Bioorg Med Chem Lett 2020; 30:127514. [PMID: 32860980 DOI: 10.1016/j.bmcl.2020.127514] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Structural hybridization of preclinically and clinically validated pharmacologically active molecules has emerged as a promising tool to develop new generations of safe and highly efficient drug candidates against various diseases including microbial infections, virus infections and cancer. Strategies of drug-drug combinations have been adopted to generate hybrid conjugates of many clinically used drugs, designed to address inherent problems associated with these drugs. Thus, the design of hybrids was aimed to achieve higher efficacy through possible multi-target interactions, selective delivery of the drug to the site of action with the aim to improve bioavailability, alleviate toxicity and circumvent drug resistances. In this review article, we summarize the progress made in recent years in the rapidly growing field of drug discovery, focusing on the rationality of the hybrid design with particular emphasis on the linker architecture, which plays a crucial role in the overall success of a hybrid drug.
Collapse
Affiliation(s)
- Halmuthur M Sampath Kumar
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany; CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|
15
|
Abstract
Artemisinin (ART) and its derivatives are one of the most important classes of antimalarial agents, originally derived from a Chinese medicinal plant called Artemisia annua L. Beyond their outstanding antimalarial and antischistosomal activities, ART and its derivatives also possess both in-vitro and in-vivo activities against various types of cancer. Their anticancer effects range from initiation of apoptotic cell death to inhibition of cancer proliferation, metastasis and angiogenesis, and even modulation of the cell signal transduction pathway. This review provides a comprehensive update on ART and its derivatives, their mechanisms of action, and their synergistic effects with other chemicals in targeting leukemia cells. Combined with limited evidence of drug resistance and low toxicity profile, we conclude that ART and its derivatives, including dimers, trimers, and hybrids, might be a potential therapeutic alternative to current chemotherapies in combating leukemia, although more studies are necessary before they can be applied clinically.
Collapse
|
16
|
Yaremenko IA, Coghi P, Prommana P, Qiu C, Radulov PS, Qu Y, Belyakova YY, Zanforlin E, Kokorekin VA, Wu YYJ, Fleury F, Uthaipibull C, Wong VKW, Terent'ev AO. Synthetic Peroxides Promote Apoptosis of Cancer Cells by Inhibiting P‐Glycoprotein ABCB5. ChemMedChem 2020; 15:1118-1127. [DOI: 10.1002/cmdc.202000042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Ivan A. Yaremenko
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Paolo Coghi
- School of PharmacyMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA) 113 Thailand Science Park Pathum Thani 12120 Thailand
| | - Congling Qiu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Peter S. Radulov
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Yuanqing Qu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Yulia Yu. Belyakova
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Enrico Zanforlin
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padova via Marzolo 5 35131 Padova Italy
| | - Vladimir A. Kokorekin
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Yuki Yu Jun Wu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Fabrice Fleury
- Mechanism and Regulation of DNA Repair Team UFIP CNRS UMR 6286Université de Nantes 2 chemin de la Houssinière 44322 Nantes France
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA) 113 Thailand Science Park Pathum Thani 12120 Thailand
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Alexander O. Terent'ev
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
17
|
Gao F, Sun Z, Kong F, Xiao J. Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 2020; 188:112044. [PMID: 31945642 DOI: 10.1016/j.ejmech.2020.112044] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
The emergence of drug-resistance and the low specificity of anticancer agents are the major challenges in the treatment of cancer and can result in many side effects, creating an urgent demand to develop novel anticancer agents. Artemisinin-derived compounds, bearing a peroxide-containing sesquiterpene lactone moiety, could form free radicals with high reactivity and possess diverse pharmaceutical properties including in vitro and in vivo anticancer activity besides their typical antimalarial activity. Hybrid molecules have the potential to improve the specificity and overcome the drug resistance, therefore hybridization of artemisinin skeleton with other anticancer pharmacophores may provide novel anticancer candidates with high specificity and great potency against drug-resistant cancers. The review outlines the recent advances of artemisinin-derived hybrids as potential anticancer agents, and the structure-activity relationships are also discussed to provide an insight for rational designs of novel hybrids with high activity.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| | - Zhou Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| |
Collapse
|
18
|
Newman DJ. Modern traditional Chinese medicine: Identifying, defining and usage of TCM components. PHARMACOLOGICAL ADVANCES IN NATURAL PRODUCT DRUG DISCOVERY 2020; 87:113-158. [DOI: 10.1016/bs.apha.2019.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Budde S, Goerdeler F, Floß J, Kreitmeier P, Hicks EF, Moscovitz O, Seeberger PH, Davies HML, Reiser O. Visible-light mediated oxidative ring expansion of anellated cyclopropanes to fused endoperoxides with antimalarial activity. Org Chem Front 2020. [DOI: 10.1039/d0qo00168f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hetero- and carbocyclic anellated cyclopropanes were converted in one step by a visible light induced photooxidation to their corresponding polycyclic endoperoxides, which show promising antimalarial activity.
Collapse
Affiliation(s)
- Simon Budde
- Universität Regensburg
- 93053 Regensburg
- Germany
| | - Felix Goerdeler
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam
- Germany
| | | | | | | | - Oren Moscovitz
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam
- Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam
- Germany
- Institute of Chemistry and Biochemistry
| | | | | |
Collapse
|
20
|
Zhang B. Artemisinin‐derived dimers as potential anticancer agents: Current developments, action mechanisms, and structure–activity relationships. Arch Pharm (Weinheim) 2019; 353:e1900240. [DOI: 10.1002/ardp.201900240] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/26/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Bo Zhang
- School of Chemistry and Life ScienceAnshan Normal University Anshan Liaoning China
| |
Collapse
|
21
|
Keenan AB, Wojciechowicz ML, Wang Z, Jagodnik KM, Jenkins SL, Lachmann A, Ma'ayan A. Connectivity Mapping: Methods and Applications. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-072018-021211] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Connectivity mapping resources consist of signatures representing changes in cellular state following systematic small-molecule, disease, gene, or other form of perturbations. Such resources enable the characterization of signatures from novel perturbations based on similarity; provide a global view of the space of many themed perturbations; and allow the ability to predict cellular, tissue, and organismal phenotypes for perturbagens. A signature search engine enables hypothesis generation by finding connections between query signatures and the database of signatures. This framework has been used to identify connections between small molecules and their targets, to discover cell-specific responses to perturbations and ways to reverse disease expression states with small molecules, and to predict small-molecule mimickers for existing drugs. This review provides a historical perspective and the current state of connectivity mapping resources with a focus on both methodology and community implementations.
Collapse
Affiliation(s)
- Alexandra B. Keenan
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan L. Wojciechowicz
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kathleen M. Jagodnik
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sherry L. Jenkins
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences and Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Lee DH, Hasanuzzaman M, Kwon D, Choi HY, Kim SM, Kim DJ, Kang DJ, Hwang TH, Kim HH, Shin HJ, Shin JG, Oh S, Lee S, Kim SW. 10-Phenyltriazoyl Artemisinin is a Novel P-glycoprotein Inhibitor that Suppresses the Overexpression and Function of P-glycoprotein. Curr Pharm Des 2019; 24:5590-5597. [DOI: 10.2174/1381612825666190222155700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
Abstract
Background:
The effect of drugs on ATP-binding cassette transporters, especially permeabilityglycoprotein
(P-gp), is an important consideration during new anti-cancer drug development.
Objective:
In this context, the effects of a newly synthesized artemisinin derivative, 10-(4-phenyl-1H-1,2,3-
triazol)-artemisinin (5a), were evaluated on P-gp expression and function.
Methods:
Reverse transcript polymerase chain reaction and immunoblotting techniques were used to determine
the effect of 5a on P-gp expression in LS174T cells. In addition, the ability of 5a to work as either a substrate or
an inhibitor of P-gp was investigated through different methods.
Results:
The results revealed that 5a acts as a novel P-gp inhibitor that dually suppresses the overexpression and
function of P-glycoprotein. Co-treatment of LS174T cell line, human colon adenocarcinoma cell line, with 5a and
paclitaxel recovered the anticancer effect of paclitaxel by controlling the acquired drug resistance pathway. The
overexpression of P-gp induced by rifampin and paclitaxel in a colorectal cell line was suppressed by 5a which
could be a novel inhibitory substrate inhibiting the transport of paclitaxel by P-gp.
Conclusion:
The results revealed that 5a can be classified as a type B P-gp inhibitor (with both substrate and
inhibitor activities) with an additional function of suppressing P-gp overexpression. The results might be clinically
useful in the development of anticancer drugs against cancers with multidrug resistance.
Collapse
Affiliation(s)
- Dong-Hwan Lee
- Hallym Institute for Clinical Medicine, Hallym University Medical Center, Anyang, 14066, Korea
| | - Md. Hasanuzzaman
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Daeho Kwon
- Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Hye-Young Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - So Myoung Kim
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Dong Jin Kim
- Approval and Review Team, Medical Device Safety Bureau, Ministry of Food and Drug Safety, Cheongju 28159, Korea
| | - Dong Ju Kang
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Tae-Ho Hwang
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Hyung-Hoi Kim
- Department of Laboratory Medicine, (Bio) Medical Research Institute, School of Medicine, Pusan National University, Pusan National University Hospital, Busan 4924, Korea
| | - Ho Jung Shin
- SPMED Co., Ltd., 111 Hyoyeol-ro, Buk-gu, Busan 46508, Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Sangtae Oh
- Department of Basic Science, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Seokjoon Lee
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - So Won Kim
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| |
Collapse
|