1
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
2
|
Toki E, Goto S, Setoguchi S, Terada K, Watase D, Yamakawa H, Yamada A, Koga M, Kubota K, Iwasaki K, Karube Y, Matsunaga K, Takata J. Delivery of the reduced form of vitamin K 2(20) to NIH/3T3 cells partially protects against rotenone induced cell death. Sci Rep 2022; 12:19878. [PMID: 36400879 PMCID: PMC9674836 DOI: 10.1038/s41598-022-24456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Mitochondria generate energy through the action of the electron transport chain (ETC) and ATP synthase. Mitochondrial malfunction can lead to various disorders, including neurodegenerative diseases. Several reports have shown that menaquinone-4 (MK-4, vitamin K2(20)), a safe drug for osteoporosis, may improve mitochondrial function. Here, we hypothesized that the efficient delivery of menahydroquinone-4 (MKH), an active form of MK-4, could exert a supporting effect. We verified the effects of MKH delivery on mitochondrial dysfunction by using MK-4 and MKH ester derivatives in NIH/3T3 mouse fibroblast cells treated with mitochondrial inhibitors. MK-4 and MKH derivatives suppressed cell death, the decline in mitochondrial membrane potential (MMP), excessive reactive oxygen species (ROS) production, and a decrease in intrinsic coenzyme Q9 (CoQ9) induced by rotenone (ROT, complex I inhibitor). MK-4 and MKH derivatives delivered MKH to NIH/3T3 cells, acting as an effective MKH prodrug, proving that the delivered MKH may reflect the mitigation effects on ROT-induced mitochondrial dysfunction. MKH prodrugs are also effective against 3-nitropropionic acid (3-NP, complex II inhibitor) and carbonyl cyanide-m-chlorophenylhydrazone (CCCP, uncoupler)-induced cell death. In conclusion, MKH delivery may mitigate mitochondrial dysfunction by maintaining MMP, ROS, and CoQ9, indicating that MKH prodrugs may be good candidates for treating mitochondrial disorders.
Collapse
Affiliation(s)
- Erina Toki
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Shotaro Goto
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Shuichi Setoguchi
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Kazuki Terada
- grid.412142.00000 0000 8894 6108Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, 670-8524 Japan
| | - Daisuke Watase
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Hirofumi Yamakawa
- grid.411497.e0000 0001 0672 2176Radioisotope Center, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Ayano Yamada
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Mitsuhisa Koga
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Kaori Kubota
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Katsunori Iwasaki
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Yoshiharu Karube
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Kazuhisa Matsunaga
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| | - Jiro Takata
- grid.411497.e0000 0001 0672 2176Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180 Japan
| |
Collapse
|
3
|
Yamakawa H, Setoguchi S, Goto S, Watase D, Terada K, Nagata-Akaho N, Toki E, Koga M, Matsunaga K, Karube Y, Takata J. Growth Inhibitory Effects of Ester Derivatives of Menahydroquinone-4, the Reduced Form of Vitamin K 2(20), on All-Trans Retinoic Acid-Resistant HL60 Cell Line. Pharmaceutics 2021; 13:pharmaceutics13050758. [PMID: 34065416 PMCID: PMC8161027 DOI: 10.3390/pharmaceutics13050758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
The first-choice drug for acute promyelocytic leukemia (APL), all-trans retinoic acid (ATRA), frequently causes drug-resistance and some adverse effects. Thus, an effective and safe agent for ATRA-resistant APL is needed. Menaquinone-4 (MK-4, vitamin K2(20)), used for osteoporosis treatment, does not have serious adverse effects. It has been reported that MK-4 has growth-inhibitory effects on HL60 cells by inducing apoptosis via the activation of Bcl-2 antagonist killer 1 (BAK). However, the effect of MK-4 on ATRA-resistant APL has not been reported. Here, we show that ester derivatives of menahydroquinone-4 (MKH; a reduced form of MK-4), MKH 1,4-bis-N,N-dimethylglycinate (MKH-DMG) and MKH 1,4-bis-hemi-succinate (MKH-SUC), exerted strong growth-inhibitory effects even on ATRA-resistant HL60 (HL-60R) cells compared with ATRA and MK-4. MKH delivery after MKH-SUC treatment was higher than that after MK-4 treatment, and the results indicated apoptosis induced by BAK activation. In contrast, for MKH-DMG, reconversion to MKH was slow and apoptosis was not observed. We suggest that the ester forms, including monoesters of MKH-DMG, exhibit another mechanism independent of apoptosis. In conclusion, the MKH derivatives (MKH-SUC and MKH-DMG) inhibited not only HL60 cells but also HL-60R cells, indicating a potential to overcome ATRA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jiro Takata
- Correspondence: ; Tel.: +81-92-871-6631 (ext. 6662)
| |
Collapse
|
4
|
Setoguchi S, Nagata-Akaho N, Goto S, Yamakawa H, Watase D, Terada K, Koga M, Matsunaga K, Karube Y, Takata J. Evaluation of photostability and phototoxicity of esterified derivatives of ubiquinol-10 and their application as prodrugs of reduced coenzyme Q 10 for topical administration. Biofactors 2020; 46:983-994. [PMID: 33025665 DOI: 10.1002/biof.1678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022]
Abstract
Ubiquinol-10 (UqH-10), the fully reduced form of ubiquinone-10 (Uq-10, coenzyme Q10 ), is an antioxidant and is involved in energy production. However, physicochemical disadvantages, such as rapid oxidation, water-insolubility, photoinstability, and phototoxicity, limit its application. We previously reported that UqH-10 1,4-bis-N,N-dimethylglycinate improved the oxidation susceptibility and poor bioavailability of UqH-10 in rats. Herein, we evaluated the photochemical properties of UqH-esterified derivatives (N,N-dimethylglycinate, hemi-succinate, ethylsuccinate, and hemi-glutarate). Photostability was examined by irradiation using artificial sunlight and monochromatic light. The concentration of each compound was determined using LC-MS/MS. Phototoxicity was assessed by singlet oxygen and superoxide assays. Delivery of UqH-10 via UqH-esters to the HaCaT human keratinocyte cell line was determined using LC-MS/MS. UqH-esters showed higher photostability to artificial sunlight than Uq-10 and UqH-10. Uq-10 and UqH-10 were rapidly degraded by monochromatic light at 279 nm, whereas UqH-esters were more stable. UVA and/or UVB irradiation generated high levels of singlet oxygen and superoxide in Uq-10, whereas UqH-esters were unreactive. Additionally, UqH-esters effectively delivered UqH-10 to HaCaT cells following efficient uptake in their ester forms and ester bond hydrolysis in the cells. In conclusion, UqH-ester derivatives exhibit higher photostability and lower phototoxicity compared with Uq-10 and UqH-10.
Collapse
Affiliation(s)
- Shuichi Setoguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Nami Nagata-Akaho
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shotaro Goto
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Hirofumi Yamakawa
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Daisuke Watase
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuki Terada
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Mitsuhisa Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | - Yoshiharu Karube
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Jiro Takata
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
5
|
Matsushima Y, Terada K, Kamei C, Sugimoto Y. Sertraline inhibits nerve growth factor-induced neurite outgrowth in PC12 cells via a mechanism involving the sigma-1 receptor. Eur J Pharmacol 2019; 853:129-135. [PMID: 30902656 DOI: 10.1016/j.ejphar.2019.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/18/2019] [Indexed: 02/02/2023]
Abstract
The selective serotonin reuptake inhibitors (SSRIs) fluvoxamine and sertraline show a high affinity for sigma-1 receptors. Fluvoxamine enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells via a sigma-1 receptor-mediated mechanism, which suggests that neurogenesis may be involved in the antidepressant action of fluvoxamine. However, the effects of sertraline on neurite outgrowth remain unclear. Here, we report the effects of sertraline on NGF-induced neurite outgrowth in PC12 cells. At concentrations above 0.3 μM, sertraline inhibited neurite outgrowth induced by NGF (50 ng/mL) in PC12 cells in a concentration-dependent manner. At 0.3-3 μM, sertraline inhibited NGF-induced neurite outgrowth; however, had no effect on cell viability. This suggests that at these concentrations, sertraline inhibits NGF-induced neurite outgrowth without causing cell toxicity. Because sertraline has a high affinity for the sigma-1 receptor, we investigated whether this receptor is involved in sertraline's inhibitory effect on NGF-induced neurite outgrowth. The effect was reversed by both the sigma-1 receptor agonist PRE-084 and the sigma-1 receptor antagonist NE-100. These results suggest that sertraline inhibits NGF-induced neurite outgrowth in PC12 cells by acting as an inverse agonist of the sigma-1 receptor in this system.
Collapse
Affiliation(s)
- Yukari Matsushima
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan; Department of Kampo and Natural Product Chemistry, Yokohama University of Pharmacy, 601 Matanocho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Chiaki Kamei
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| | - Yumi Sugimoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
6
|
Prodrugs for Skin Delivery of Menahydroquinone-4, an Active Form of Vitamin K 2(20), Could Overcome the Photoinstability and Phototoxicity of Vitamin K 2(20). Int J Mol Sci 2019; 20:ijms20102548. [PMID: 31137618 PMCID: PMC6566782 DOI: 10.3390/ijms20102548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
The effective delivery of menahydroquinone-4 (MKH), an active form of menaquinone-4 (MK-4, vitamin K2(20)), to the skin is beneficial in the treatment of various skin pathologies. However, its delivery through the application of MK-4 to the skin is hampered due to the photoinstability and phototoxicity of MK-4. This study aimed to evaluate the potential of ester prodrugs of MKH for its delivery into the skin to avoid the abovementioned issues. The ester prodrugs, MKH 1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG) and MKH 1,4-bis-hemisuccinate (MKH-SUC), were prepared using our previously reported methods. Photostability was determined under artificial sunlight and multi-wavelength light irradiation, phototoxicity was determined by intracellular ROS formation and cell viability of UVA-irradiated human epidermal keratinocyte cells (HaCaT), and delivery of MKH into HaCaT cells was assessed by measuring menaquinone-4 epoxide (MKO) levels. MKH prodrugs showed higher photostability than MK-4. Although MK-4 induced cellular ROS and reduced cell viability after UVA irradiation, MKH prodrugs did not affect either ROS generation or cell viability. MKH prodrugs enhanced intracellular MKO, indicating effective delivery of MKH and subsequent carboxylation activity. In conclusion, these MKH prodrugs show potential for the delivery of MKH into the skin without photoinstability and phototoxicity.
Collapse
|