1
|
Philipova I, Mihaylova R, Momekov G, Angelova R, Stavrakov G. Ferrocene modified analogues of imatinib and nilotinib as potent anti-cancer agents. RSC Med Chem 2023; 14:880-889. [PMID: 37252096 PMCID: PMC10211329 DOI: 10.1039/d3md00030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2024] Open
Abstract
The unique features of ferrocene and the need for development of targeted anticancer drugs inspired the design, synthesis and biological evaluation of ferrocenyl modified tyrosine kinase inhibitors by replacing the pyridyl moiety in imatinib and nilotinib generalized structures with a ferrocenyl group. A series of seven new ferrocene analogues were synthesized and evaluated for their anticancer activity in a panel of bcr-abl positive human malignant cell lines using imatinib as a reference drug. The metallocenes exhibited a dose-dependent inhibition on malignant cell growth with varying antileukemic activity. The most potent analogues were compounds 9 and 15a showing comparable or even superior efficacy to the reference. Their cancer selectivity indices suggest a favorable selectivity profile, indicating a 250 times higher preferential activity of 15a towards malignantly transformed K-562 cells and an even twice greater one (500) of 9 in the LAMA-84 leukemic model as compared to the normal murine fibroblast cell line.
Collapse
Affiliation(s)
- Irena Philipova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bontchev str. Bl. 9 1113 Sofia Bulgaria
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| | - Rostislava Angelova
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| | - Georgi Stavrakov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bontchev str. Bl. 9 1113 Sofia Bulgaria
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| |
Collapse
|
2
|
Carrión-Marchante R, Pinto-Díez C, Klett-Mingo JI, Palacios E, Barragán-Usero M, Pérez-Morgado MI, Pascual-Mellado M, Alcalá S, Ruiz-Cañas L, Sainz B, González VM, Martín ME. An Aptamer against MNK1 for Non-Small Cell Lung Cancer Treatment. Pharmaceutics 2023; 15:1273. [PMID: 37111758 PMCID: PMC10146192 DOI: 10.3390/pharmaceutics15041273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients. The previously identified and optimized aptamer from our laboratory against MNK1, apMNKQ2, showed promising results as an antitumor drug in breast cancer in vitro and in vivo. Thus, the present study shows the antitumor potential of apMNKQ2 in another type of cancer where MNK1 plays a significant role, such as NSCLC. The effect of apMNKQ2 in lung cancer was studied with viability, toxicity, clonogenic, migration, invasion, and in vivo efficacy assays. Our results show that apMNKQ2 arrests the cell cycle and reduces viability, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in NSCLC cells. In addition, apMNKQ2 reduces tumor growth in an A549-cell line NSCLC xenograft model. In summary, targeting MNK1 with a specific aptamer may provide an innovative strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Rebeca Carrión-Marchante
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - José Ignacio Klett-Mingo
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Esther Palacios
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miriam Barragán-Usero
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M. Isabel Pérez-Morgado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Manuel Pascual-Mellado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sonia Alcalá
- Department of Cancer, Instituto de Investigaciones-Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Cancer, Instituto de Investigaciones-Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Bruno Sainz
- Department of Cancer, Instituto de Investigaciones-Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer—CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Víctor M. González
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M. Elena Martín
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
3
|
Mazewski C, Platanias LC. MNK Proteins as Therapeutic Targets in Leukemia. Onco Targets Ther 2023; 16:283-295. [PMID: 37113687 PMCID: PMC10128080 DOI: 10.2147/ott.s370874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In leukemia, resistance to therapy is a major concern for survival. MAPK-interacting kinases (MNKs) have been identified as important activators of oncogenic-related signaling and may be mediators of resistance. Recent studies in leukemia models, especially acute myeloid leukemia (AML), have focused on targeting MNKs together with other inhibitors or treating chemotherapy-resistant cells with MNK inhibitors. The preclinical demonstrations of the efficacy of MNK inhibitors in these combination formats would suggest a promising potential for use in clinical trials. Optimizing MNK inhibitors and testing in leukemia models is actively being pursued and may have important implications for the future. These studies are furthering the understanding of the mechanisms of MNKs in cancer which could translate to clinical studies.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Correspondence: Candice Mazewski; Leonidas C Platanias, Email ;
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
4
|
Ali HM, Ali IH. Thermal and thermo-oxidative stability of a series of palladium and platinum ferrocenylamine sulfides and selenides. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221141979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferrocenylamine complexes have found increasing applications in the fields of catalysis in various organic reactions, industry, medical treatments and enzyme–activity determinations. Therefore, information related to the thermal and thermo-oxidative stability of these compounds is important for such applications; however, this information is currently limited. Twenty previously prepared palladium and platinum ferrocenylamine complexes with systematic structural variations are examined for their thermal (under nitrogen) and thermo-oxidation stability (under atmospheric air) using thermogravimetry (TG), differential thermal analysis (DTG), and differential scanning calorimetry (DSC) techniques. Degradation products are identified by comparing thermogravimetric analysis and theoretical calculations. Structure–stability studies are also discussed. The results show that all the compounds have high thermal and thermo-oxidative stabilities of up to 265 and 173 °C, respectively. Electron–donating substituents enhance the thermal and thermo-oxidative stabilities of the palladium complexes ( t-Bu, selenide electrophiles and dielectrophiles), while those with destabilizing effects are aromatic substituents (Ph and tolyl). Most platinum ferrocenylamine sulfides and selenides show higher thermal and thermo-oxidative stabilities than their corresponding palladium analogs. All the prepared compounds show high thermal and thermo-oxidative stability which reinforces their catalytic and industrial applications. However, their thermal stability is higher than their thermo-oxidative stability.
Collapse
Affiliation(s)
- Hussein M Ali
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
5
|
Sharma B, Kumar V. Has Ferrocene Really Delivered Its Role in Accentuating the Bioactivity of Organic Scaffolds? J Med Chem 2021; 64:16865-16921. [PMID: 34792350 DOI: 10.1021/acs.jmedchem.1c00390] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ferrocene is an important structural core in bioorganometallic chemistry because of its inherent stability, excellent redox properties, and low toxicity. Ferroquine and ferrocifen are two of the most notable contributions of ferrocene to medicinal chemistry with remarkable antimalarial and anticancer properties. The improved medicinal properties of these drug candidates highlight the impact that ferrocene can have on the molecular and biological properties of the bioactive compounds. In this Perspective, we investigate the scope and limitations of ferrocene incorporation into organic compounds/natural products on their mode of action and biological activities. We have also discussed the detailed role of ferrocene modifications in influencing the anticancer, antimalarial, and antimicrobial properties of various bioactive moieties to design safer and promising ferrocene-based drugs.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
6
|
Nayeem N, Contel M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chemistry 2021; 27:8891-8917. [PMID: 33857345 DOI: 10.1002/chem.202100438] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.
Collapse
Affiliation(s)
- Nazia Nayeem
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA
| | - Maria Contel
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, Hawaii, 96813, USA
| |
Collapse
|
7
|
Jin X, Yu R, Wang X, Proud CG, Jiang T. Progress in developing MNK inhibitors. Eur J Med Chem 2021; 219:113420. [PMID: 33892273 DOI: 10.1016/j.ejmech.2021.113420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
The MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E (eukaryotic initiation factor 4 E) at serine 209; eIF4E plays an important role in the translation of cytoplasmic mRNAs, all of which possess a 5' 'cap' structure to which eIF4E binds. Elevated levels of eIF4E, p-eIF4E and/or the MNK protein kinases have been found in many types of cancer, including solid tumors and leukemia. MNKs also play a role in metabolic disease. Regulation of the activities of MNKs (MNK1 and MNK2), control the phosphorylation of eIF4E, which in turn has a close relationship with the processes of tumor development, cell migration and invasion, and energy metabolism. MNK knock-out mice display no adverse effects on normal cells or phenotypes suggesting that MNK may be a potentially safe targets for the treatment of various cancers. Several MNK inhibitors or 'degraders' have been identified. Initially, some of the inhibitors were developed from natural products or based on other protein kinase inhibitors which inhibit multiple kinases. Subsequently, more potent and selective inhibitors for MNK1/2 have been designed and synthesized. Currently, three inhibitors (BAY1143269, eFT508 and ETC-206) are in various stages of clinical trials for the treatment of solid cancers or leukemia, either alone or combined with inhibitors of other protein kinase. In this review, we summarize the diverse MNK inhibitors that have been reported in patents and other literature, including those with activities in vitro and/or in vivo.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Hernández-Zazueta MS, García-Romo JS, Noguera-Artiaga L, Luzardo-Ocampo I, Carbonell-Barrachina ÁA, Taboada-Antelo P, Campos-Vega R, Rosas-Burgos EC, Burboa-Zazueta MG, Ezquerra-Brauer JM, Martínez-Soto JM, Santacruz-Ortega HDC, Burgos-Hernández A. Octopus vulgaris ink extracts exhibit antioxidant, antimutagenic, cytoprotective, antiproliferative, and proapoptotic effects in selected human cancer cell lines. J Food Sci 2021; 86:587-601. [PMID: 33462812 DOI: 10.1111/1750-3841.15591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023]
Abstract
Cancer is a noncommunicable disease of rising worldwide concern. Marine food products such as Octopus vulgaris ink (OI) could be sources of compounds addressing these concerns. This study aimed to evaluate the antimutagenic, cytoprotective, antiproliferative, proapoptotic, and antioxidant capacity of OI extracts on human cancer cell lines (22Rv1, HeLa, A549). The ARPE-19 cell line was used as a reference human cell line to evaluate the ink's cytotoxicity. The water extract exhibited the highest antimutagenic and cytoprotective effect, but the dichloromethane extract (DM) showed the lowest half lethal concentration against 22Rv1 cells. Structural elucidation of purified DM fractions (F1, F2, F3) identified an unreported compound, N-(2-ozoazepan-3-yl)-pyrrolidine-2-carboxamide (OPC). DM-F2 showed high antiproliferative effect (LC50 = 27.6 µg/mL), reactive species modulation, early-apoptosis induction (42.9%), and nuclei disruption in 22Rv1 cells. In silico analysis predicted high OPC affinity with Cyclin D1 (-6.70 kcal/mol), suggesting its potential impact on cell cycle arrest. These results highlight the antimutagenic, cytoprotective, and antiproliferative potential health benefits derived from underutilized marine food products such as OI. Further investigations at in vitro or in vivo levels are required to elucidate mechanisms and health benefits from OI. PRACTICAL APPLICATION: O. vulgaris ink is an underutilized marine natural product that could be a source of biological compounds with potential health benefits such as antioxidant activity and cancer prevention.
Collapse
Affiliation(s)
| | - Joel Said García-Romo
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | - Luis Noguera-Artiaga
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Orihuela, Alicante, 03312, España
| | - Iván Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, 76010, México
| | | | - Pablo Taboada-Antelo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Universidad de Santiago de Compostela, Santiago de Compostela, Galicia, 15782, España
| | - Rocio Campos-Vega
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, 76010, México
| | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | | | | | - Juan Manuel Martínez-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | | | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, 83000, México
| |
Collapse
|
9
|
Yang X, Zhong W, Cao R. Phosphorylation of the mRNA cap-binding protein eIF4E and cancer. Cell Signal 2020; 73:109689. [PMID: 32535199 PMCID: PMC8049097 DOI: 10.1016/j.cellsig.2020.109689] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Dysregulated protein synthesis is frequently involved in oncogenesis and cancer progression. Translation initiation is thought to be the rate-limiting step in protein synthesis, and the mRNA 5' cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) is a pivotal factor that initiates translation. The activities of eIF4E are regulated at multiple levels, one of which is through its phosphorylation at Serine 209 by the mitogen-activated protein kinase-interacting kinases (MNKs, including MNK1 and MNK2). Benefiting from novel mouse genetic tools and pharmacological MNK inhibitors, our understanding of a role for eIF4E phosphorylation in tumor biology and cancer therapy has greatly evolved in recent years. Importantly, recent studies have found that the level of eIF4E phosphorylation is frequently upregulated in a wide variety of human cancer types, and phosphorylation of eIF4E drives a number of important processes in cancer biology, including cell transformation, proliferation, apoptosis, metastasis and angiogenesis. The MNK-eIF4E axis is being assessed as a therapeutic target either alone or in combination with other therapies in different cancer models. As novel MNK inhibitors are being developed, experimental studies bring new hope to cure human cancers that are not responsive to traditional therapies. Herein we review recent progress on our understanding of a mechanistic role for phosphorylation of eIF4E in cancer biology and therapy.
Collapse
Affiliation(s)
- Xiaotong Yang
- School of Medicine, Tsinghua University, Beijing 100084, China; National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Allison M, Wilson D, Pask CM, McGowan PC, Lord RM. β-Diketonate versus β-Ketoiminate: The Importance of a Ferrocenyl Moiety in Improving the Anticancer Potency. Chembiochem 2020; 21:1988-1996. [PMID: 32176811 PMCID: PMC7496474 DOI: 10.1002/cbic.202000028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Indexed: 12/01/2022]
Abstract
Herein we present a library of fully characterized β-diketonate and β-ketoiminate compounds that are functionalized with a ferrocenyl moiety. Their cytotoxic potential has been determined by screening against human breast adenocarcinomas (MCF-7 and MDA-MB-231), human colorectal carcinoma p53 wild type (HCT116 p53+/+ ) and normal human prostate (PNT2) cell lines. The ferrocenyl β-diketonate compounds are more than 18 times more cytotoxic than the ferrocenyl β-ketoiminate analogues. Against MCF-7, compounds functionalized at the meta position are up to nine times more cytotoxic than when functionalized at the para position. The ferrocenyl β-diketonate compounds have increased selectivity towards MCF-7 and MDA-MB-231, with several complexes having selectivity index (SI) values that are more than nine times (MCF-7) and more than six times (MDA-MB-231) that of carboplatin. The stability of these compounds in dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) has been assessed by NMR spectroscopy and mass spectrometry studies, and the compounds show no oxidation of the iron center from FeII to FeIII . Cytotoxicity screening was performed in both DMSO and DMF, with no significant differences observedin their potency.
Collapse
Affiliation(s)
| | - Daniel Wilson
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | | | | | - Rianne M. Lord
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- School of Chemistry and BiosciencesUniversity of BradfordBradfordBD7 1DPUK
| |
Collapse
|
11
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, González VM, Martín ME. Deeping in the Role of the MAP-Kinases Interacting Kinases (MNKs) in Cancer. Int J Mol Sci 2020; 21:2967. [PMID: 32340135 PMCID: PMC7215568 DOI: 10.3390/ijms21082967] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are involved in oncogenic transformation and can promote metastasis and tumor progression. In human cells, there are four MNKs isoforms (MNK1a/b and MNK2a/b), derived from two genes by alternative splicing. These kinases play an important role controlling the expression of specific proteins involved in cell cycle, cell survival and cell motility via eukaryotic initiation factor 4E (eIF4E) regulation, but also through other substrates such as heterogeneous nuclear ribonucleoprotein A1, polypyrimidine tract-binding protein-associated splicing factor and Sprouty 2. In this review, we provide an overview of the role of MNK in human cancers, describing the studies conducted to date to elucidate the mechanism involved in the action of MNKs, as well as the development of MNK inhibitors in different hematological cancers and solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - María Elena Martín
- Grupo de Aptámeros, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Ctra. Colmenar Km. 9100, 28034 Madrid, Spain; (C.P.-D.); (R.F.-M.); (R.C.-M.); (V.M.G.)
| |
Collapse
|
12
|
Rep V, Piškor M, Šimek H, Mišetić P, Grbčić P, Padovan J, Gabelica Marković V, Jadreško D, Pavelić K, Kraljević Pavelić S, Raić-Malić S. Purine and Purine Isostere Derivatives of Ferrocene: An Evaluation of ADME, Antitumor and Electrochemical Properties. Molecules 2020; 25:molecules25071570. [PMID: 32235404 PMCID: PMC7180452 DOI: 10.3390/molecules25071570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022] Open
Abstract
Novel purine and purine isosteres containing a ferrocene motif and 4,1-disubstituted (11a-11c, 12a-12c, 13a-13c, 14a-14c, 15a-15c, 16a, 23a-23c, 24a-24c, 25a-25c) and 1,4-disubstituted (34a-34c and 35a-35c) 1,2,3-triazole rings were synthesized. The most potent cytotoxic effect on colorectal adenocarcinoma (SW620) was exerted by the 6-chloro-7-deazapurine 11c (IC50 = 9.07 µM), 6-chloropurine 13a (IC50 = 14.38 µM) and 15b (IC50 = 15.50 µM) ferrocenylalkyl derivatives. The N-9 isomer of 6-chloropurine 13a containing ferrocenylmethylene unit showed a favourable in vitro physicochemical and ADME properties including high solubility, moderate permeability and good metabolic stability in human liver microsomes.
Collapse
Affiliation(s)
- Valentina Rep
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia; (V.R.); (M.P.); (H.Š.)
| | - Martina Piškor
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia; (V.R.); (M.P.); (H.Š.)
| | - Helena Šimek
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia; (V.R.); (M.P.); (H.Š.)
| | - Petra Mišetić
- Fidelta d.o.o., Zagreb 10000, Croatia; (P.M.); (J.P.)
| | - Petra Grbčić
- Department of Biotechnology, Center for High-Throughput Technologies, University of Rijeka, Rijeka 51000, Croatia; (P.G.); (S.K.P.)
| | - Jasna Padovan
- Fidelta d.o.o., Zagreb 10000, Croatia; (P.M.); (J.P.)
| | - Vesna Gabelica Marković
- International Relations Office, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia;
| | - Dijana Jadreško
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, Croatia;
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula 52100, Croatia;
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, Center for High-Throughput Technologies, University of Rijeka, Rijeka 51000, Croatia; (P.G.); (S.K.P.)
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia; (V.R.); (M.P.); (H.Š.)
- Correspondence: ; Tel.: +385-1-4597213
| |
Collapse
|
13
|
Wang R, Chen H, Yan W, Zheng M, Zhang T, Zhang Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur J Med Chem 2020; 190:112109. [PMID: 32032851 DOI: 10.1016/j.ejmech.2020.112109] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Cancer is one of the most fatal threatens to human health throughout the world. The major challenges in the control and eradication of cancers are the continuous emergency of drug-resistant cancer and the low specificity of anticancer agents, creating an urgent need to develop novel anticancer agents. Organometallic compounds especially ferrocene derivatives possess remarkable structural and mechanistic diversity, inherent stability towards air, heat and light, low toxicity, low cost, reversible redox, ligand exchange, and catalytic properties, making them promising drug candidates for cancer therapy. Ferrocifen, a ferrocene-phenol hybrid, has demonstrated promising anticancer properties on drug-resistant cancers. Currently, Ferrocifen is in pre-clinical trial against cancers. Obviously, ferrocene moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of ferrocene-containing hybrids with potential application in the treatment of cancers covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Ruo Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Huahong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Weitao Yan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingwen Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Tesen Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yaohuan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
14
|
Sansook S, Hassell-Hart S, Ocasio C, Spencer J. Ferrocenes in medicinal chemistry; a personal perspective. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Nandanwar SK, Kim HJ. Anticancer and Antibacterial Activity of Transition Metal Complexes. ChemistrySelect 2019. [DOI: 10.1002/slct.201803073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sondavid K. Nandanwar
- Department of Marine Convergence ProgramPukyong National University Busan 48513 Republic of Korea
| | - Hak Jun Kim
- Department of ChemistryPukyong National University Busan 48513 Republic of Korea
| |
Collapse
|