1
|
Ren M, Sun G, Ding X, Yu X, He L, Xiao S, Dong M, Yang J, Ding K, Sun C. A polysaccharide from Gynostemma pentaphyllum: structure characterization and anti-insulin resistance potential through Galectin-3 modulation. Int J Biol Macromol 2025; 310:143618. [PMID: 40306526 DOI: 10.1016/j.ijbiomac.2025.143618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/03/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Polysaccharides are among the key bioactive components of Gynostemma pentaphyllum (Thunb.) Makino. In this study, a novel polysaccharide fraction, GPPA1-1, was isolated from G. pentaphyllum and purified using DEAE-Sepharose Fast Flow, Sephadex G-75, and Sepharose CL-6B column chromatography. GPPA1-1 was determined to have a molecular weight of 3.7 × 104 Da and was composed of mannose (Man), glucuronic acid (GlcA), rhamnose (Rha), glucose (Glc), galactose (Gal), and arabinose (Ara) in a molar ratio of 3.88:3.97:21.77:7.02:45.65:17.71. Comprehensive structural characterization was conducted using Congo red staining, FT-IR spectroscopy, Methylation analysis, and NMR analysis. The backbone of GPPA1-1 was identified as comprising →4)-α-Galp-(1→, →4)-α-Galp-(3,1→, →2)-α-Rhap-(4,1→, and →2)-α-Rhap-(1→, with branch chains containing α-Araf-(1→, →5)-α-Araf-(1→, →3)-α-Galp-(1→, and -α-GlcA-(1→. Biological assays demonstrated that GPPA1-1 effectively alleviates insulin resistance by inhibiting Galectin-3. This activity was confirmed through various experiments, including Galectin-3-mediated hemagglutination, Western blotting, CETSA, and glucose uptake assays. These findings highlight the potential of GPPA1-1 as a promising therapeutic agent for managing insulin resistance.
Collapse
Affiliation(s)
- Mingwang Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Guoqing Sun
- Department of Pharmacy, Third People's Hospital of Dalian, Dalian 116091, China
| | - Xiaoyu Ding
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xiaolin Yu
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Li He
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Shiji Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Minjian Dong
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Jianwen Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| | - Kan Ding
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Chengxin Sun
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
2
|
Benítez-Villaseñor A, Jost M, Granados Mendoza C, Wanke S, Meza-Lázaro RN, Peñafiel Cevallos M, Freire E, Magallón S. Exploring Structural Plastome Evolution in Asterales: Insights from Off-Target Hybrid Enrichment Data on the Small Single-Copy Region. J Mol Evol 2025; 93:111-123. [PMID: 39724205 DOI: 10.1007/s00239-024-10224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented. This study investigates the possibility of recovering plastid loci from off-target reads obtained through hybrid enrichment techniques. Our sampling includes 63 species from the eleven currently recognized families in Asterales derived from previously published studies. We assembled and annotated complete and partial plastomes using custom pipelines and estimate phylogenomic relationships. We retrieved plastid information from 60 of the 63 sampled species including a complete plastome from Tithonia tubaeformis (Asteraceae), circular partial (with gaps) plastomes from seven species, and non-circular partial plastomes from other 52 species. We focused on the small single-copy region because it could be recovered for over 29 species. Within the small single-copy region, we assessed intron losses and presence of putative pseudogenes. Comparative genomics revealed a relocated fragment of ~ 6500 bp in two Campanulaceae lineages (i. e. subfamily Lobelioideae and Pseudonemacladus oppositifolium), involving the genes rbcL, atpB, atpE, trnM-CAU, and trnV-UAC. Obtained phylogenetic hypotheses were congruent across the applied methods and consistent with previously published results. Our study demonstrates the feasibility of recovering plastid information, both complete and partial, from off-target hybrid enrichment data and provides insights on the structural plastome changes that have occurred throughout the evolution of the order Asterales.
Collapse
Affiliation(s)
- Adriana Benítez-Villaseñor
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, A. P. 70-153, C.P.04510, Ciudad de Mexico, México.
| | - Matthias Jost
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
- Goethe-University Frankfurt, Institute of Ecology, Evolution & Diversity, 60438, Frankfurt, Germany
- Institut Für Botanik, Technische Universität Dresden, Zellescher Weg 20B, 01217, Dresden, Germany
- Senckenberg Forschungsinstitut Und Naturmuseum, Botanik Und Molekulare Evolutionsforschung, 60325, Frankfurt, Germany
| | - Rubi N Meza-Lázaro
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Marcia Peñafiel Cevallos
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Efraín Freire
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, 170135, Ecuador
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
3
|
Deng C, Jia X, Chen S, Guo J, Zeng C, Chen Y, Zhu Q, Huang Y. The complete chloroplast genome sequence of Melothria scabra (Cucurbitaceae). Mitochondrial DNA B Resour 2024; 9:1648-1652. [PMID: 39640867 PMCID: PMC11619021 DOI: 10.1080/23802359.2024.2435901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Melothria scabra has gradually become an economically important plant worldwide. The complete chloroplast genome of M. scabra has a length of 156,744 bp, contains a large single-copy (LSC) region (86,387 bp), a small single-copy (SSC) region (18,055 bp), and two inverted repeats (IRs) with the same length of 26,151 bp. In total, 126 genes were detected, including 83 protein-encoding genes, 35 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. For phylogenetic analysis, M. scabra has a closer genetic relationship with Cucumis sativus and Citrullus lanatus. The complete chloroplast genome sequence of M. scabra would promote the germplasm exploration, phylogenetic relationships, and molecular biology researches in Melothria.
Collapse
Affiliation(s)
- Chan Deng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Xinbi Jia
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Siyue Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Jiaqi Guo
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Chenghong Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Yuewen Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Qianglong Zhu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Lin J, Lin Z, Chen Y, Xu H. The complete chloroplast genome sequence of Lemna turionifera (Araceae). Mitochondrial DNA B Resour 2024; 9:971-975. [PMID: 39091512 PMCID: PMC11293259 DOI: 10.1080/23802359.2024.2384577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Lemna turionifera is native to North America and northern Asia, with significant potential for industrial wastewater remediation. The complete nucleotide sequence of the L. turionifera chloroplast genome (cpDNA) was determined. The cpDNA is a circular molecule of 166,606 bp and containing a pair of inverted repeats (IRs) measuting 31,663 bp each. These IRs are flanked by a small single-copy region of 13,542 bp and a large single-copy region of 89,738 bp. The chloroplast genome of L. turionifera consisted of 112 unique genes, including 78 protein-encoding genes, 30 tRNA genes, and four rRNA genes. The phylogenetic analysis utilizing cpDNA provided a well-supported resolution of the relationships among subfamilies within the Araceae family. Our findings indicated a close relationship between L. turionifera and a clade consisting of L. minor, L. japonica, and L. gibba. The availability of the complete chloroplast genome sequence of L. turionifera presents valuable data for future phylogenetic investigations within the Lemnaceae family.
Collapse
Affiliation(s)
- Jiexin Lin
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Zhongyuan Lin
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yanqiong Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Huibin Xu
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
5
|
Alshegaihi RM, Mansour H, Alrobaish SA, Al Shaye NA, Abd El-Moneim D. The First Complete Chloroplast Genome of Cordia monoica: Structure and Comparative Analysis. Genes (Basel) 2023; 14:genes14050976. [PMID: 37239336 DOI: 10.3390/genes14050976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Cordia monoica is a member of the Boraginaceae family. This plant is widely distributed in tropical regions and has a great deal of medical value as well as economic importance. In the current study, the complete chloroplast (cp) genome of C. monoica was sequenced, assembled, annotated, and reported. This circular chloroplast genome had a size of 148,711 bp, with a quadripartite structure alternating between a pair of repeated inverted regions (26,897-26,901 bp) and a single copy region (77,893 bp). Among the 134 genes encoded by the cp genome, there were 89 protein-coding genes, 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 1387 tandem repeats were detected, with the hexanucleotides class making up 28 percent of the repeats. Cordia monoica has 26,303 codons in its protein-coding regions, and leucine amino acid was the most frequently encoded amino acid in contrast to cysteine. In addition, 12 of the 89 protein-coding genes were found to be under positive selection. The phyloplastomic taxonomical clustering of the Boraginaceae species provides further evidence that chloroplast genome data are reliable not only at family level but also in deciphering the phylogeny at genus level (e.g., Cordia).
Collapse
Affiliation(s)
- Rana M Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Hassan Mansour
- Department of Biological Sciences, Faculty of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Shouaa A Alrobaish
- Department of Biology, College of Science, Qassim University, Buraydah 52377, Saudi Arabia
| | - Najla A Al Shaye
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| |
Collapse
|
6
|
Zhou C, Wang P, Zeng Q, Zeng R, Hu W, Sun L, Liu S, Luan F, Zhu Q. Comparative chloroplast genome analysis of seven extant Citrullus species insight into genetic variation, phylogenetic relationships, and selective pressure. Sci Rep 2023; 13:6779. [PMID: 37185306 PMCID: PMC10130142 DOI: 10.1038/s41598-023-34046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
Citrullus ecirrhosus, Citrullus rehmii, and Citrullus naudinianus are three important related wild species of watermelon in the genus Citrullus, and their morphological differences are clear, however, their chloroplast genome differences remain unknown. This study is the first to assemble, analyze, and publish the complete chloroplast genomes of C. ecirrhosus, C. rehmii, and C. naudinianus. A comparative analysis was then conducted among the complete chloroplast genomes of seven extant Citrullus species, and the results demonstrated that the average genome sizes of Citrullus is 157,005 bp, a total of 130-133 annotated genes were identified, including 8 rRNA, 37 tRNA and 85-88 protein-encoding genes. Their gene content, order, and genome structure were similar. However, noncoding regions were more divergent than coding regions, and rps16-trnQ was a hypervariable fragment. Thirty-four polymorphic SSRs, 1,271 SNPs and 234 INDELs were identified. Phylogenetic trees revealed a clear phylogenetic relationship of Citrullus species, and the developed molecular markers (SNPs and rps16-trnQ) could be used for taxonomy in Citrullus. Three genes (atpB, clpP1, and rpoC2) were identified to undergo selection and would promote the environmental adaptation of Citrullus.
Collapse
Affiliation(s)
- Cong Zhou
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Putao Wang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Qun Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Rongbin Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Wei Hu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Lei Sun
- Department of Agronomy and Horticulture, Liaoning Agricultural Technical College, Yingkou, 115009, People's Republic of China
| | - Shi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qianglong Zhu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
7
|
Gan J, Li Y, Tang D, Guo B, Li D, Cao F, Sun C, Yu L, Yan Z. The Complete Chloroplast Genomes of Gynostemma Reveal the Phylogenetic Relationships of Species within the Genus. Genes (Basel) 2023; 14:genes14040929. [PMID: 37107687 PMCID: PMC10138119 DOI: 10.3390/genes14040929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Gynostemma is an important medicinal and food plant of the Cucurbitaceae family. The phylogenetic position of the genus Gynostemma in the Cucurbitaceae family has been determined by morphology and phylogenetics, but the evolutionary relationships within the genus Gynostemma remain to be explored. The chloroplast genomes of seven species of the genus Gynostemma were sequenced and annotated, of which the genomes of Gynostemma simplicifolium, Gynostemma guangxiense and Gynostemma laxum were sequenced and annotated for the first time. The chloroplast genomes ranged from 157,419 bp (Gynostemma compressum) to 157,840 bp (G. simplicifolium) in length, including 133 identical genes: 87 protein-coding genes, 37 tRNA genes, eight rRNA genes and one pseudogene. Phylogenetic analysis showed that the genus Gynostemma is divided into three primary taxonomic clusters, which differs from the traditional morphological classification of the genus Gynostemma into the subgenus Gynostemma and Trirostellum. The highly variable regions of atpH-atpL, rpl32-trnL, and ccsA-ndhD, the repeat unilts of AAG/CTT and ATC/ATG in simple sequence repeats (SSRs) and the length of overlapping regions between rps19 and inverted repeats(IRb) and between ycf1 and small single-copy (SSC) were found to be consistent with the phylogeny. Observations of fruit morphology of the genus Gynostemma revealed that transitional state species have independent morphological characteristics, such as oblate fruit and inferior ovaries. In conclusion, both molecular and morphological results showed consistency with those of phylogenetic analysis.
Collapse
Affiliation(s)
- Jiaxia Gan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Ministry of Education, Beijing 100193, China
| | - Ying Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Ministry of Education, Beijing 100193, China
| | - Deying Tang
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, China
| | - Baolin Guo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Ministry of Education, Beijing 100193, China
| | - Doudou Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Ministry of Education, Beijing 100193, China
| | - Feng Cao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Ministry of Education, Beijing 100193, China
| | - Chao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Ministry of Education, Beijing 100193, China
| | - Liying Yu
- Guangxi Botanical Garden of Medicinal Plant, Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Nanning 530023, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
She CW, Jiang XH, He CP. Comparative karyotype analysis of eight Cucurbitaceae crops using fluorochrome banding and 45S rDNA-FISH. COMPARATIVE CYTOGENETICS 2023; 17:31-58. [PMID: 37305810 PMCID: PMC10252140 DOI: 10.3897/compcytogen.v17.i1.99236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 06/13/2023]
Abstract
To have an insight into the karyotype variation of eight Cucurbitaceae crops including Cucumissativus Linnaeus, 1753, Cucumismelo Linnaeus, 1753, Citrulluslanatus (Thunberg, 1794) Matsumura et Nakai, 1916, Benincasahispida (Thunberg, 1784) Cogniaux, 1881, Momordicacharantia Linnaeus, 1753, Luffacylindrica (Linnaeus, 1753) Roemer, 1846, Lagenariasicerariavar.hispida (Thunberg, 1783) Hara, 1948 and Cucurbitamoschata Duchesne ex Poiret, 1819, well morphologically differentiated mitotic metaphase chromosomes were prepared using the enzymatic maceration and flame-drying method, and the chromosomal distribution of heterochromatin and 18S-5.8S-26S rRNA genes (45S rDNA) was investigated using sequential combined PI and DAPI (CPD) staining and fluorescence in situ hybridization (FISH) with 45S rDNA probe. Detailed karyotypes were established using the dataset of chromosome measurements, fluorochrome bands and rDNA FISH signals. Four karyotype asymmetry indices, CVCI, CVCL, MCA and Stebbins' category, were measured to elucidate the karyological relationships among species. All the species studied had symmetrical karyotypes composed of metacentric and submetacentric or only metacentric chromosomes, but their karyotype structure can be discriminated by the scatter plot of MCA vs. CVCL. The karyological relationships among these species revealed by PCoA based on x, 2n, TCL, MCA, CVCL and CVCI was basically in agreement with the phylogenetic relationships revealed by DNA sequences. CPD staining revealed all 45S rDNA sites in all species, (peri)centromeric GC-rich heterochromatin in C.sativus, C.melo, C.lanatus, M.charantia and L.cylindrica, terminal GC-rich heterochromatin in C.sativus. DAPI counterstaining after FISH revealed pericentromeric DAPI+ heterochromatin in C.moschata. rDNA FISH detected two 45S loci in five species and five 45S loci in three species. Among these 45S loci, most were located at the terminals of chromosome arms, and a few in the proximal regions. In C.sativus, individual chromosomes can be precisely distinguished by the CPD band and 45S rDNA signal patterns, providing an easy method for chromosome identification of cucumber. The genome differentiation among these species was discussed in terms of genome size, heterochromatin, 45S rDNA site, and karyotype asymmetry based on the data of this study and previous reports.
Collapse
Affiliation(s)
- Chao-Wen She
- Key Laboratory of Research and Utilization of
Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan,
418008, ChinaHuaihua UniversityHuaihuaChina
- College of Life Sciences and Chemistry, Hunan University
of Technology, Zhuzhou, Hunan, 412007, ChinaHunan University of TechnologyZhuzhouChina
| | - Xiang-Hui Jiang
- Key Laboratory of Research and Utilization of
Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan,
418008, ChinaHuaihua UniversityHuaihuaChina
| | - Chun-Ping He
- College of Life Sciences and Chemistry, Hunan University
of Technology, Zhuzhou, Hunan, 412007, ChinaHunan University of TechnologyZhuzhouChina
| |
Collapse
|
9
|
Cai L, Pan R, Zeng Q, Zhang X, Zeng R, Zhu Q. The complete plastome sequence of Momordica cochinchinensis (Cucurbitaceae). Mitochondrial DNA B Resour 2023; 8:329-332. [PMID: 36876141 PMCID: PMC9980024 DOI: 10.1080/23802359.2023.2181649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Momordica cochinchinensis (Lour.) Spreng. is an important medicinal plant that is used to treat various diseases in South and Southeast Asia. In this study, the complete plastome of M. cochinchinensis was sequenced and found to exhibit a total length of 158,955 bp, with a large single copy (LSC) region of 87,924 bp and a small single copy (SSC) region of 18,479 bp, as well as with two inverted repeats (IRs) that were both 26,726 bp in length. In total, 129 genes were detected, comprising 86 protein-encoding genes, 8 ribosomal RNA (rRNA) genes, and 35 transfer RNA (tRNA) genes. Furthermore, the inferred phylogenetic tree confirmed that M. cochinchinensis belongs to the genus Momordica in the Cucurbitaceae family. The research results will be used for authenticating M. cochinchinensis plant materials and for analyzing the genetic diversity and phylogenetic relationships in Momordica.
Collapse
Affiliation(s)
- Lijuan Cai
- Nanchang Business College, Jiangxi Agricultural University, Gongqing, P. R. China
| | - Rao Pan
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Qun Zeng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Xiaoyan Zhang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Rongbin Zeng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Qianglong Zhu
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| |
Collapse
|
10
|
Zhang X, Zhao Y, Kou Y, Chen X, Yang J, Zhang H, Zhao Z, Zhao Y, Zhao G, Li Z. Diploid chromosome-level reference genome and population genomic analyses provide insights into Gypenoside biosynthesis and demographic evolution of Gynostemma pentaphyllum (Cucurbitaceae). HORTICULTURE RESEARCH 2022; 10:uhac231. [PMID: 36643751 PMCID: PMC9832869 DOI: 10.1093/hr/uhac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/01/2022] [Indexed: 06/17/2023]
Abstract
Gynostemma pentaphyllum (Thunb.) Makino is a perennial creeping herbaceous plant in the family Cucurbitaceae, which has great medicinal value and commercial potential, but urgent conservation efforts are needed due to the gradual decreases and fragmented distribution of its wild populations. Here, we report the high-quality diploid chromosome-level genome of G. pentaphyllum obtained using a combination of next-generation sequencing short reads, Nanopore long reads, and Hi-C sequencing technologies. The genome is anchored to 11 pseudo-chromosomes with a total size of 608.95 Mb and 26 588 predicted genes. Comparative genomic analyses indicate that G. pentaphyllum is estimated to have diverged from Momordica charantia 60.7 million years ago, with no recent whole-genome duplication event. Genomic population analyses based on genotyping-by-sequencing and ecological niche analyses indicated low genetic diversity but a strong population structure within the species, which could classify 32 G. pentaphyllum populations into three geographical groups shaped jointly by geographic and climate factors. Furthermore, comparative transcriptome analyses showed that the genes encoding enzyme involved in gypenoside biosynthesis had higher expression levels in the leaves and tendrils. Overall, the findings obtained in this study provide an effective molecular basis for further studies of demographic genetics, ecological adaption, and systematic evolution in Cucurbitaceae species, as well as contributing to molecular breeding, and the biosynthesis and biotransformation of gypenoside.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
| | - Yuhe Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaodan Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 030012, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
| | - Hao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
- College of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Zhe Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
| | - Yuemei Zhao
- School of Biological Sciences, Guizhou Education University, Guiyang, Guizhou, 550018, China
| | | | | |
Collapse
|
11
|
Lu QX, Chang X, Gao J, Wu X, Wu J, Qi ZC, Wang RH, Yan XL, Li P. Evolutionary Comparison of the Complete Chloroplast Genomes in Convallaria Species and Phylogenetic Study of Asparagaceae. Genes (Basel) 2022; 13:genes13101724. [PMID: 36292609 PMCID: PMC9601677 DOI: 10.3390/genes13101724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Convallaria (Asparagaceae) comprises three herbaceous perennial species that are widely distributed in the understory of temperate deciduous forests in the Northern Hemisphere. Although Convallaria species have high medicinal and horticultural values, studies related to the phylogenetic analysis of this genus are few. In the present study, we assembled and reported five complete chloroplast (cp) sequences of three Convallaria species (two of C. keiskei Miq., two of C. majalis L., and one of C. montana Raf.) using Illumina paired-end sequencing data. The cp genomes were highly similar in overall size (161,365–162,972 bp), and all consisted of a pair of inverted repeats (IR) regions (29,140–29,486 bp) separated by a large single-copy (LSC) (85,183–85,521 bp) and a small single-copy (SSC) region (17,877–18,502 bp). Each cp genome contained the same 113 unique genes, including 78 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. Gene content, gene order, AT content and IR/SC boundary structure were nearly identical among all of the Convallaria cp genomes. However, their lengths varied due to contraction/expansion at the IR/LSC borders. Simple sequence repeat (SSR) analyses indicated that the richest SSRs are A/T mononucleotides. Three highly variable regions (petA-psbJ, psbI-trnS and ccsA-ndhD) were identified as valuable molecular markers. Phylogenetic analysis of the family Asparagaceae using 48 cp genome sequences supported the monophyly of Convallaria, which formed a sister clade to the genus Rohdea. Our study provides a robust phylogeny of the Asparagaceae family. The complete cp genome sequences will contribute to further studies in the molecular identification, genetic diversity, and phylogeny of Convallaria.
Collapse
Affiliation(s)
- Qi-Xiang Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao Chang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xue Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Wu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe-Chen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
- Correspondence: (Z.-C.Q.); (R.-H.W.)
| | - Rui-Hong Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (Z.-C.Q.); (R.-H.W.)
| | - Xiao-Ling Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Pan Li
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Comparative Analysis of the Complete Chloroplast Genomes in Allium Section Bromatorrhiza Species (Amaryllidaceae): Phylogenetic Relationship and Adaptive Evolution. Genes (Basel) 2022; 13:genes13071279. [PMID: 35886061 PMCID: PMC9324613 DOI: 10.3390/genes13071279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/03/2022] Open
Abstract
With the development of molecular sequencing approaches, many taxonomic and phylogenetic problems of the genus Allium L. have been solved; however, the phylogenetic relationships of some subgenera or sections, such as section Bromatorrhiza, remain unresolved, which has greatly impeded our full understanding of the species relationships among the major clades of Allium. In this study, the complete chloroplast (cp) genomes of nine species in the Allium sect. Bromatorrhiza were determined using the Illumina paired-end sequencing, the NOVOPlasty de novo assembly strategy, and the PGA annotation method. The results showed that the cp genome exhibited high conservation and revealed a typical circular tetrad structure. Among the sect. Bromatorrhiza species, the gene content, SSRs, codon usage, and RNA editing site were similar. The genome structure and IR regions’ fluctuation were investigated while genes, CDSs, and non-coding regions were extracted for phylogeny reconstruction. Evolutionary rates (Ka/Ks values) were calculated, and positive selection analysis was further performed using the branch-site model. Five hypervariable regions were identified as candidate molecular markers for species authentication. A clear relationship among the sect. Bromatorrhiza species were detected based on concatenated genes and CDSs, respectively, which suggested that sect. Bromatorrhiza is monophyly. In addition, there were three genes with higher Ka/Ks values (rps2, ycf1, and ycf2), and four genes (rpoC2, atpF, atpI, and rpl14) were further revealed to own positive selected sites. These results provide new insights into the plastome component, phylogeny, and evolution of Allium species.
Collapse
|
13
|
The complete chloroplast genome of critically endangered Chimonobambusa hirtinoda (Poaceae: Chimonobambusa) and phylogenetic analysis. Sci Rep 2022; 12:9649. [PMID: 35688841 PMCID: PMC9187695 DOI: 10.1038/s41598-022-13204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Chimonobambusa hirtinoda, a threatened species, is only naturally distributed in Doupeng Mountain, Duyun, Guizhou, China. Next-generation sequencing (NGS) is used to obtain the complete chloroplast (cp) genome sequence of C. hirtinoda. The sequence was assembled and analyzed for phylogenetic and evolutionary studies. Additionally, we compared the cp genome of C. hirtinoda with previously published Chimonobambusa species. The cp genome of C. hirtinoda has a total length of 139, 561 bp and 38.90% GC content. This genome included a large single -copy (LSC) region of 83, 166 bp, a small single-copy (SSC) region of 20, 811 bp and a pair of inverted repeats of 21,792 bp each. We discovered 130 genes in the cp genome, including 85 protein-coding genes, 37 tRNA, and 8 rRNA genes. A total of 48 simple sequence repeats (SSRs) were detected. The A/U preference of the third nucleotide in the cp genome of C. hirtinoda was obtained by measuring the codon usage frequency of amino acids. Furthermore, phylogenetic analysis using complete cp sequences and matK gene revealed a genetic relationship within the Chimonobambusa genus. This study reported the chloroplast genome of the C. hirtinoda.
Collapse
|
14
|
Li B, Liu T, Ali A, Xiao Y, Shan N, Sun J, Huang Y, Zhou Q, Zhu Q. Complete chloroplast genome sequences of three aroideae species (Araceae): lights into selective pressure, marker development and phylogenetic relationships. BMC Genomics 2022; 23:218. [PMID: 35305558 PMCID: PMC8933883 DOI: 10.1186/s12864-022-08400-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background Colocasia gigantea, Caladium bicolor and Xanthosoma sagittifolium are three worldwide famous ornamental and/or vegetable plants in the Araceae family, these species in the subfamily Aroideae are phylogenetically perplexing due to shared interspecific morphological traits and variation. Result This study, for the first time ever, assembled and analyzed complete chloroplast genomes of C. gigantea, C. bicolor and X. sagittifolium with genome sizes of 165,906 bp, 153,149 bp and 165,169 bp in length, respectively. The genomes were composed of conserved quadripartite circular structures with a total of 131 annotated genes, including 8 rRNA, 37 tRNA and 86 protein-coding genes. A comparison within Aroideae showed seven protein-coding genes (accD, ndhF, ndhK, rbcL, rpoC1, rpoC2 and matK) linked to environmental adaptation. Phylogenetic analysis confirmed a close relationship of C. gigantea with C. esculenta and S. colocasiifolia, and the C. bicolor with X. sagittifolium. Furthermore, three DNA barcodes (atpH-atpI + psaC-ndhE, atpH-atpI + trnS-trnG, atpH-atpI + psaC-ndhE + trnS-trnG) harbored highly variable regions to distinguish species in Aroideae subfamily. Conclusion These results would be beneficial for species identification, phylogenetic relationship, genetic diversity, and potential of germplasm resources in Aroideae. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08400-3.
Collapse
|
15
|
Zhang X, Chen X, Zhang H, Zhao Y, Ju M, Zhao G. Characterization of the complete chloroplast genome sequence of Gynostemma microspermum (Cucurbitaceae). Mitochondrial DNA B Resour 2022; 7:32-34. [PMID: 34912963 PMCID: PMC8667937 DOI: 10.1080/23802359.2021.2007811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Gynostemma microspermum C. Y. Wu et S. K. Chen is an endemic creeping herbaceous species mainly distributed in dense forests on limestone in northwestern China. Here, the complete chloroplast genome sequence of G. microspermum was obtained by Illumina pair-end sequencing. The circular complete chloroplast genome of G. microspermum is 158,692 bp in length and contains a large single copy region (87,452 bp), a small single copy region (19,068 bp) and two short inverted repeat regions (26,086 bp). The genome sequence encodes 133 genes including 87 protein-coding genes, 37 transfer RNA genes, 8 ribosomal RNA genes and 1 pseudogene. The maximum likelihood (ML) phylogeny estimation shows that G. microspermum is sister to all other analyzed species of the genus Gynostemma with high bootstrap support.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi’an, China
| | - Xiaodan Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi’an, China
| | - Hao Zhang
- College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuemei Zhao
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Miaomiao Ju
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi’an, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi’an, China
| |
Collapse
|
16
|
Park I, Song JH, Yang S, Chae S, Moon BC. Plastid Phylogenomic Data Offers Novel Insights Into the Taxonomic Status of the Trichosanthes kirilowii Complex (Cucurbitaceae) in South Korea. FRONTIERS IN PLANT SCIENCE 2021; 12:559511. [PMID: 34386020 PMCID: PMC8353159 DOI: 10.3389/fpls.2021.559511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Trichosanthes is a genus in Cucurbitaceae comprising 90-100 species. Trichosanthes species are valuable as herbaceous medicinal ingredients. The fruits, seeds, and roots of species such as T. kirilowii and T. rosthornii are used in Korean traditional herbal medicines. T. rosthornii is only found in China, whereas in South Korea two varieties, T. kirilowii var. kirilowii and T. kirilowii var. japonica, are distributed. T. kirilowii var. kirilowii and T. kirilowii var. japonica have different fruit and leaf shapes but are recognized as belonging to the same species. Furthermore, although its members have herbal medicine applications, genomic information of the genus is still limited. The broad goals of this study were (i) to evaluate the taxonomy of Trichosanthes using plastid phylogenomic data and (ii) provide molecular markers specific for T. kirilowii var. kirilowii and T. kirilowii var. japonica, as these have differences in their pharmacological effectiveness and thus should not be confused and adulterated. Comparison of five Trichosanthes plastid genomes revealed locally divergent regions, mainly within intergenic spacer regions (trnT-UGU-trnL-UAA: marker name Tri, rrn4.5-rrn5: TRr, trnE-UUC-trnT-GGU: TRtt). Using these three markers as DNA-barcodes for important herbal medicine species in Trichosanthes, the identity of Trichosanthes material in commercial medicinal products in South Korea could be successfully determined. Phylogenetic analysis of the five Trichosanthes species revealed that the species are clustered within tribe Sicyoeae. T. kirilowii var. kirilowii and T. rosthornii formed a clade with T. kirilowii var. japonica as their sister group. As T. kirilowii in its current circumscription is paraphyletic and as the two varieties can be readily distinguished morphologically (e.g., in leaf shape), T. kirilowii var. japonica should be treated (again) as an independent species, T. japonica.
Collapse
Affiliation(s)
- Inkyu Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Jun-Ho Song
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Sungwook Chae
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| |
Collapse
|
17
|
Yuan C, Sha X, Xiong M, Zhong W, Wei Y, Li M, Tao S, Mou F, Peng F, Zhang C. Uncovering dynamic evolution in the plastid genome of seven Ligusticum species provides insights into species discrimination and phylogenetic implications. Sci Rep 2021; 11:988. [PMID: 33441833 PMCID: PMC7806627 DOI: 10.1038/s41598-020-80225-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/16/2020] [Indexed: 12/02/2022] Open
Abstract
Ligusticum L., one of the largest members in Apiaceae, encompasses medicinally important plants, the taxonomic statuses of which have been proved to be difficult to resolve. In the current study, the complete chloroplast genomes of seven crucial plants of the best-known herbs in Ligusticum were presented. The seven genomes ranged from 148,275 to 148,564 bp in length with a highly conserved gene content, gene order and genomic arrangement. A shared dramatic decrease in genome size resulted from a lineage-specific inverted repeat (IR) contraction, which could potentially be a promising diagnostic character for taxonomic investigation of Ligusticum, was discovered, without affecting the synonymous rate. Although a higher variability was uncovered in hotspot divergence regions that were unevenly distributed across the chloroplast genome, a concatenated strategy for rapid species identification was proposed because separate fragments inadequately provided variation for fine resolution. Phylogenetic inference using plastid genome-scale data produced a concordant topology receiving a robust support value, which revealed that L. chuanxiong had a closer relationship with L. jeholense than L. sinense, and L. sinense cv. Fuxiong had a closer relationship to L. sinense than L. chuanxiong, for the first time. Our results not only furnish concrete evidence for clarifying Ligusticum taxonomy but also provide a solid foundation for further pharmaphylogenetic investigation.
Collapse
Affiliation(s)
- Can Yuan
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China.,Comprehensive Experimental Station of Cheng Du, Chinese Materia Medica of China Agriculture Research System, Chengdu, 610300, China
| | - Xiufen Sha
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China.,Comprehensive Experimental Station of Cheng Du, Chinese Materia Medica of China Agriculture Research System, Chengdu, 610300, China
| | - Miao Xiong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China.,Comprehensive Experimental Station of Cheng Du, Chinese Materia Medica of China Agriculture Research System, Chengdu, 610300, China
| | - Wenjuan Zhong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China.,Comprehensive Experimental Station of Cheng Du, Chinese Materia Medica of China Agriculture Research System, Chengdu, 610300, China
| | - Yu Wei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Shan Tao
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China.,Comprehensive Experimental Station of Cheng Du, Chinese Materia Medica of China Agriculture Research System, Chengdu, 610300, China
| | - Fangsheng Mou
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China
| | - Fang Peng
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China. .,Comprehensive Experimental Station of Cheng Du, Chinese Materia Medica of China Agriculture Research System, Chengdu, 610300, China.
| | - Chao Zhang
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China. .,Comprehensive Experimental Station of Cheng Du, Chinese Materia Medica of China Agriculture Research System, Chengdu, 610300, China.
| |
Collapse
|
18
|
Ren T, Li ZX, Xie DF, Gui LJ, Peng C, Wen J, He XJ. Plastomes of eight Ligusticum species: characterization, genome evolution, and phylogenetic relationships. BMC PLANT BIOLOGY 2020; 20:519. [PMID: 33187470 PMCID: PMC7663912 DOI: 10.1186/s12870-020-02696-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The genus Ligusticum consists of approximately 60 species distributed in the Northern Hemisphere. It is one of the most taxonomically difficult taxa within Apiaceae, largely due to the varied morphological characteristics. To investigate the plastome evolution and phylogenetic relationships of Ligusticum, we determined the complete plastome sequences of eight Ligusticum species using a de novo assembly approach. RESULTS Through a comprehensive comparative analysis, we found that the eight plastomes were similar in terms of repeat sequence, SSR, codon usage, and RNA editing site. However, compared with the other seven species, L. delavayi exhibited striking differences in genome size, gene number, IR/SC borders, and sequence identity. Most of the genes remained under the purifying selection, whereas four genes showed relaxed selection, namely ccsA, rpoA, ycf1, and ycf2. Non-monophyly of Ligusticum species was inferred from the plastomes and internal transcribed spacer (ITS) sequences phylogenetic analyses. CONCLUSION The plastome tree and ITS tree produced incongruent tree topologies, which may be attributed to the hybridization and incomplete lineage sorting. Our study highlighted the advantage of plastome with mass informative sites in resolving phylogenetic relationships. Moreover, combined with the previous studies, we considered that the current taxonomy system of Ligusticum needs to be improved and revised. In summary, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of Ligusticum species.
Collapse
Affiliation(s)
- Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zi-Xuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ling-Jian Gui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jun Wen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Chloroplast Genome Sequences and Comparative Analyses of Combretaceae Mangroves with Related Species. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5867673. [PMID: 33062686 PMCID: PMC7545412 DOI: 10.1155/2020/5867673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 11/17/2022]
Abstract
In the Combretaceae family, only two species of Lumnitzera and one species of Laguncularia belong to mangroves. Among them, Lumnitzera littorea (Jack) Voigt. is an endangered mangrove plant in China for the limited occurrence and seed abortion. In contrast, Lumnitzera racemosa Willd. is known as the most widespread mangrove plant in China. Laguncularia racemosa C. F. Gaertn., an exotic mangrove in China, has the fast growth and high adaptation ability. To better understand the phylogenetic positions of these mangroves in Combretaceae and in Myrtales and to provide information for studies on evolutionary adaptation for intertidal habitat, the complete chloroplast (cp) genomes of Lu. racemosa and La. racemosa were sequenced. Furthermore, we present here the results from the assembly and annotation of the two cp genomes, which were further subjected to the comparative analysis with Lu. littorea cp genomes we published before and other eleven closely related species within Myrtales. The chloroplast genomes of the three Combretaceae mangrove species: Lu. littorea, Lu. racemosa, and La. racemosa are 159,687 bp, 159,473 bp, and 158,311 bp in size. All three cp genomes host 130 genes including 85 protein-coding genes, 37 tRNAs, and 4 rRNAs. A comparative analysis of those three genomes revealed the high similarity of genes in coding-regions and conserved gene order in the IR and LSC/SSC regions. The differences between Lumnitzera and Laguncularia cp genomes are the locations of rps19 and rpl2 genes in the IR/SC boundary regions. Investigating the effects of selection events on shared protein-coding genes showed a relaxed selection had acted on the ycf2, ycf1, and matK genes of Combretaceae mangroves compared to the nonmangrove species Eucalyptus aromaphloia. The phylogenetic analysis based on the whole chloroplast genome sequence with one outgroup species strongly supported three Combretaceae mangroves together with other two Combretaceae species formed a cluster in Combretaceae. This study is the first report on the comparative analysis of three Combretaceae mangrove chloroplast genomes, which will provide the significant information for understanding photosynthesis and evolution in Combretaceae mangrove plants.
Collapse
|
20
|
Shi H, Yang M, Mo C, Xie W, Liu C, Wu B, Ma X. Complete chloroplast genomes of two Siraitia Merrill species: Comparative analysis, positive selection and novel molecular marker development. PLoS One 2019; 14:e0226865. [PMID: 31860647 PMCID: PMC6924677 DOI: 10.1371/journal.pone.0226865] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/05/2019] [Indexed: 11/18/2022] Open
Abstract
Siraitia grosvenorii fruit, known as Luo-Han-Guo, has been used as a traditional Chinese medicine for many years, and mogrosides are its primary active ingredients. Unfortunately, Siraitia siamensis, its wild relative, might be misused due to its indistinguishable appearance, not only threatening the reliability of the medication but also partly exacerbating wild resource scarcity. Therefore, high-resolution genetic markers must be developed to discriminate between these species. Here, the complete chloroplast genomes of S. grosvenorii and S. siamensis were assembled and analyzed for the first time; they were 158,757 and 159,190 bp in length, respectively, and possessed conserved quadripartite circular structures. Both contained 134 annotated genes, including 8 rRNA, 37 tRNA and 89 protein-coding genes. Twenty divergences (Pi > 0.03) were found in the intergenic regions. Nine protein-coding genes, accD, atpA, atpE, atpF, clpP, ndhF, psbH, rbcL, and rpoC2, underwent selection within Cucurbitaceae. Phylogenetic relationship analysis indicated that these two species originated from the same ancestor. Finally, four pairs of molecular markers were developed to distinguish the two species. The results of this study will be beneficial for taxonomic research, identification and conservation of Siraitia Merrill wild resources in the future.
Collapse
Affiliation(s)
- Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | | | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| |
Collapse
|