1
|
Hanzawa M, Sugasawa H, Ogura T, Iimura KI, Misono T. Direct observation of interactions between supported lipid bilayers and surfactants. Phys Chem Chem Phys 2025; 27:6858-6866. [PMID: 40123478 DOI: 10.1039/d4cp04449e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A mechanistic understanding of the interactions between surfactants and biomembranes is important to achieve hygiene benefits from external pathogens and chemical irritants. Supported lipid bilayers (SLBs), which are versatile platforms for mimicking envelopes and cell membranes, are widely used to study detergent dynamics at bio-nano interfaces. However, studies on the effect of a surfactant structure on SLBs are scarce, and it remains unclear how a surfactant solubilizes SLBs in real time from a morphological perspective. In this study, we prepared a SLB of L-α phosphatidylcholine at a water/aminopropyltriethoxysilane-coated silicon wafer interface and compared its transformation and desorption due to contact with aqueous solution of three surfactants, anionic sodium dodecyl sulfate (SDS), sodium N-dodecanoyl-N-methyl taurate (SDMT), and nonionic octaethyleneglycol monododecyl ether (C12EO8). A combined analysis using high-speed atomic force microscopy and the quartz crystal microbalance with dissipation monitoring technique evidenced that SDS instantaneously solubilized lipids via adsorption and insertion of SDS molecules to the SLB, whereas SDMT was reversibly adsorbed on the SLB surface without any change in the morphology of the SLB. This discrepancy can be attributed to the function and configuration of the taurate moiety in SDMT as a barrier to membrane partitioning. C12EO8 gradually disturbed the SLB morphology owing to spontaneously induced curvature changes in the SLB upon incorporation. This solubilized the lipid layers with slower kinetics as compared to that with the SDS detergent. Our findings provide a clue to the scientific understanding of the influence of additives on lipids during viral and cell disruption, which has potential implications in toiletry and cosmetics industries.
Collapse
Affiliation(s)
- Masaki Hanzawa
- Nikko Chemicals Co., Ltd, 3-24-3 Hasune, Itabashi, Tokyo 174-0046, Japan.
| | - Hiroaki Sugasawa
- Oxford Instruments K. K., 5-1-18 Kita-shinagawa, Shinagawa, Tokyo 141-0001, Japan
| | - Taku Ogura
- Nikko Chemicals Co., Ltd, 3-24-3 Hasune, Itabashi, Tokyo 174-0046, Japan.
| | - Ken-Ichi Iimura
- Division of Engineering and Agriculture, Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | - Takeshi Misono
- Nikko Chemicals Co., Ltd, 3-24-3 Hasune, Itabashi, Tokyo 174-0046, Japan.
| |
Collapse
|
2
|
Starnes SK, Del Valle JR. Synthesis, derivatization, and conformational scanning of peptides containing N-Aminoglycine. Methods Enzymol 2024; 698:1-26. [PMID: 38886028 PMCID: PMC11613113 DOI: 10.1016/bs.mie.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
N-alkylated glycine residues are the main constituent of peptoids and peptoid-peptide hybrids that are employed across the biomedical and materials sciences. While the impact of backbone N-alkylation on peptide conformation has been extensively studied, less is known about the effect of N-amination on the secondary structure propensity of glycine. Here, we describe a convenient protocol for the incorporation of N-aminoglycine into host peptides on solid support. Amide-to-hydrazide substitution also affords a nucleophilic handle for further derivatization of the backbone. To demonstrate the utility of late-stage hydrazide modification, we synthesized and evaluated the stability of polyproline II helix and β-hairpin model systems harboring N-aminoglycine derivatives. The described procedures provide facile entry into peptidomimetic libraries for conformational scanning.
Collapse
|
3
|
Tang X, Kokot J, Waibl F, Fernández-Quintero ML, Kamenik AS, Liedl KR. Addressing Challenges of Macrocyclic Conformational Sampling in Polar and Apolar Solvents: Lessons for Chameleonicity. J Chem Inf Model 2023; 63:7107-7123. [PMID: 37943023 PMCID: PMC10685455 DOI: 10.1021/acs.jcim.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
We evaluated a workflow to reliably sample the conformational space of a set of 47 peptidic macrocycles. Starting from SMILES strings, we use accelerated molecular dynamics simulations to overcome high energy barriers, in particular, the cis-trans isomerization of peptide bonds. We find that our approach performs very well in polar solvents like water and dimethyl sulfoxide. Interestingly, the protonation state of a secondary amine in the ring only slightly influences the conformational ensembles of our test systems. For several of the macrocycles, determining the conformational distribution in chloroform turns out to be considerably more challenging. Especially, the choice of partial charges crucially influences the ensembles in chloroform. We address these challenges by modifying initial structures and the choice of partial charges. Our results suggest that special care has to be taken to understand the configurational distribution in apolar solvents, which is a key step toward a reliable prediction of membrane permeation of macrocycles and their chameleonic properties.
Collapse
Affiliation(s)
- Xuechen Tang
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Anna S. Kamenik
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Kelemen ÁA, Perczel A, Horváth D, Jákli I. Amide isomerization pathways: Electronic and structural background of protonation- and deprotonation-mediated cis-trans interconversions. J Chem Phys 2023; 159:154301. [PMID: 37843061 DOI: 10.1063/5.0165772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
The cis-trans isomerization of amide bonds leads to wide range of structural and functional changes in proteins and can easily be the rate-limiting step in folding. The trans isomer is thermodynamically more stable than the cis, nevertheless the cis form can play a role in biopolymers' function. The molecular system of N-methylacetamide · 2H2O is complex enough to reveal energetics of the cis-trans isomerization at coupled cluster single-double and coupled cluster single-double and perturbative triple [CCSD(T)] levels of theory. The cis-trans isomerization cannot be oversimplified by a rotation along ω, since this rotation is coupled with the N-atom pyramidal inversion, requesting the introduction of a second dihedral angle "α." Full f(ω,α) potential energy surfaces of the different amide protonation states, critical points and isomerization reaction paths were determined, and the barriers of the neutral, O-protonated and N-deprotonated amides were found too high to allow cis-trans interconversion at room temperature: ∼85, ∼140, and ∼110 kJ mol-1, respectively. For the N-protonated amide bond, the cis form (ω = 0°) is a maximum rather than a minimum, and each ω state is accessible for less than ∼10 kJ mol-1. Here we outline a cis-trans isomerization pathway with a previously undescribed low energy transition state, which suggests that the proton is transferred from the more favorable O- to the N-protonation site with the aid of nearby water molecules, allowing the trans → cis transition to occur at an energy cost of ≤11.6 kJ mol-1. Our results help to explain why isomerase enzymes operate via protonated amide bonds and how N-protonation of the peptide bond occurs via O-protonation.
Collapse
Affiliation(s)
- Ádám A Kelemen
- HUN-REN-ELTE Protein Modelling Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - András Perczel
- HUN-REN-ELTE Protein Modelling Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Dániel Horváth
- HUN-REN-ELTE Protein Modelling Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Imre Jákli
- HUN-REN-ELTE Protein Modelling Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Mamalis D, Panagiotopoulou A, Couladouros EA, Tzeli D, Vidali VP. A DFT Study towards the Amide cis‐trans Isomerization Process of the Myc‐Max Inhibitor Mycro 3 and Its Photophysical Properties; Synthesis and NMR Studies of the trans‐Conformation. ChemistrySelect 2022. [DOI: 10.1002/slct.202201639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dimitrios Mamalis
- Laboratory of Physical Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Athens 157 71 Greece
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research “Demokritos” Ag. Paraskevi 153 41 Athens Greece
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Angeliki Panagiotopoulou
- Institute of Biosciences and Applications National Center for Scientific Research “Demokritos”, Ag. Paraskevi 153 41 Athens Greece
| | - Elias A. Couladouros
- Agricultural University of Athens Department of Food Science and Human Nutrition Iera Odos 75 Athens 118 55 Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Athens 157 71 Greece
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Veroniki P. Vidali
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research “Demokritos” Ag. Paraskevi 153 41 Athens Greece
| |
Collapse
|
6
|
Keegan BM, Catalfano KC, Banerjee M, Blagg BSJ. Synthesis and Evaluation of Small Molecule Disruptors of the Aha1/Hsp90 Complex for the Reduction of Tau Aggregation. ACS Med Chem Lett 2022; 13:827-832. [PMID: 35586436 PMCID: PMC9109267 DOI: 10.1021/acsmedchemlett.2c00064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
KU-177 was recently shown to disrupt interactions between Hsp90 and Aha1 in vitro. Subsequent studies in recombinant thioflavin T (ThT) assays demonstrated that KU-177 ablates Aha1-driven enhancement of Hsp90-dependent tau aggregation, which was confirmed by TEM. Using KU-177 as a lead compound, derivatives of KU-177 were synthesized and evaluated for their ability to disrupt Aha1/Hsp90 interactions and inhibit P301L tau aggregation. Preliminary structure-activity relationships were revealed, which led to the identification of a new lead compound that contains a cis-like amide bond. The new lead compounds retain the ability to disrupt Aha1/Hsp90 interactions in SH-SY5Y and SK-BR-3 cells without direct inhibition of Hsp90, providing a new scaffold for subsequent drug discovery efforts.
Collapse
Affiliation(s)
- Bradley M. Keegan
- Warren Center for Drug Discovery, Department
of Chemistry and Biochemistry, University
of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United
States
| | - Kevin C. Catalfano
- Warren Center for Drug Discovery, Department
of Chemistry and Biochemistry, University
of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United
States
| | - Monimoy Banerjee
- Warren Center for Drug Discovery, Department
of Chemistry and Biochemistry, University
of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United
States
| | - Brian S. J. Blagg
- Warren Center for Drug Discovery, Department
of Chemistry and Biochemistry, University
of Notre Dame, 310 McCourtney Hall, Notre Dame, Indiana 46556, United
States
| |
Collapse
|
7
|
Hristova-Avakumova NG, Valcheva EP, Anastassova NO, Nikolova-Mladenova BI, Atanasova LA, Angelova SE, Yancheva DY. In vitro and in silico studies of radical scavenging activity of salicylaldehyde benzoylhydrazones. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Mikshiev VY, Pozharskii AF, Filarowski A, Novikov AS, Antonov AS, Tolstoy PM, Vovk MA, Khoroshilova OV. How Strong is Hydrogen Bonding to Amide Nitrogen? Chemphyschem 2020; 21:651-658. [PMID: 31953976 DOI: 10.1002/cphc.201901104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Indexed: 12/23/2022]
Abstract
The protonation of the carboxamide nitrogen atom is an essential part of in vivo and in vitro processes (cis-trans isomerization, amides hydrolysis etc). This phenomenon is well studied in geometrically strongly distorted amides, although there is little data concerning the protonation of undistorted amides. In the latter case, the participation of amide nitrogen in hydrogen bonding (which can be regarded as the incipient state of a proton transfer process) is less well-studied. Thus, it would be a worthy goal to investigate the enthalpy of this interaction. We prepared and investigated a set of peri-substituted naphthalenes containing the protonated dimethylamino group next to the amide nitrogen atom ("amide proton sponges"), which could serve as models for the study of an intramolecular hydrogen bond with the amide nitrogen atom. X-Ray analysis, NMR spectra, basicity values as well as quantum chemical calculations revealed the existence of a hydrogen bond with the amide nitrogen, that should be attributed to the borderline between moderate and weak intramolecular hydrogen bonds (2-7 kcal ⋅ mol-1 ).
Collapse
Affiliation(s)
- Vladimir Y Mikshiev
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Alexander F Pozharskii
- Department of Organic Chemistry, Southern Federal University, Zorge str. 7, 344090, Rostov-on-Don, Russian Federation
| | - Alexander Filarowski
- Faculty of Chemistry, Wroclaw University, F. Joliot-Curie str. 14, 50-383, Wroclaw, Poland
- Industrial University of Tyumen, Volodarskogo str. 38, 625000, Tyumen, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Alexander S Antonov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Peter M Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Mikhail A Vovk
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Olesya V Khoroshilova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| |
Collapse
|
9
|
Amide Activation in Ground and Excited States. Molecules 2018; 23:molecules23112859. [PMID: 30400217 PMCID: PMC6278462 DOI: 10.3390/molecules23112859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
Not all amide bonds are created equally. The purpose of the present paper is the reinterpretation of the amide group by means of two concepts: amidicity and carbonylicity. These concepts are meant to provide a new viewpoint in defining the stability and reactivity of amides. With the help of simple quantum-chemical calculations, practicing chemists can easily predict the outcome of a desired process. The main benefit of the concepts is their simplicity. They provide intuitive, but quasi-thermodynamic data, making them a practical rule of thumb for routine use. In the current paper we demonstrate the performance of our methods to describe the chemical character of an amide bond strength and the way of its activation methods. Examples include transamidation, acyl transfer and amide reductions. Also, the method is highly capable for simple interpretation of mechanisms for biological processes, such as protein splicing and drug mechanisms. Finally, we demonstrate how these methods can provide information about photo-activation of amides, through the examples of two caged neurotransmitter derivatives.
Collapse
|